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Abstract-- This study examines AI-based modeling for 

multi-physics simulations of rotary mechanisms, focusing 

on the complex interactions between mechanical, thermal, 

and fluid domains. While conventional simulation 

methods are often limited by high computational costs and 

long processing times, this study evaluates data-driven and 

physics-aware alternatives—specifically Artificial Neural 

Networks (ANN), Physics-Informed Neural Networks 

(PINN), and Graph Neural Networks (GNN). Due to 

hardware and time constraints, rather than large-scale data 

generation, the research establishes a conceptual and 

methodological framework for integrating simulation-

aware AI into rotary systems. To assess practical 

implementation challenges, a Monte Carlo-based 

feasibility analysis was developed in Python; this analysis 

estimated a success probability of approximately 0.77% 

for training these models under current resource 

limitations. Ultimately, this study contributes to the 

literature by providing a structured roadmap for AI-

supported multi-physics modeling and offering practical 

guidance for engineering applications operating under 

significant computational constraints. 
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1. INTRODUCTION 

Modern engineering systems are becoming increasingly 

complex, which in turn amplifies the need for high-fidelity 

and multi-faceted simulation tools in both design and 

analysis phases. Rotary mechanisms, in particular, are 

characterized by intricate dynamic behaviors and operate 

under diverse loading and environmental conditions. As 

such, they inherently involve the interaction of multiple 

physical domains such as structural mechanics, thermal 

conduction, and fluid dynamics. While multi-physics 

simulations provide high-resolution insights into these 

interactions, their application is often limited by intensive 

computational cost and long processing times. 
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This study aims to develop an artificial intelligence (AI)-

supported modeling approach to predict the performance 

of rotary mechanisms in a faster and more computationally 

efficient manner. Instead of relying solely on traditional 

simulation tools, the proposed method involves building 

data-driven surrogate models and physics-informed neural 

networks (PINNs) capable of approximating the complex 

interrelations of multi-physics phenomena. These models 

are expected to deliver rapid and accurate predictions of 

system behavior under varying operating conditions and 

design configurations, thereby accelerating the design 

process and enabling real-time decision support. 

AI-based modeling techniques have recently gained 

significant traction in engineering due to their ability to 

enhance simulation speed and support optimization 

workflows. Deep learning architectures, in particular, are 

proficient in capturing nonlinear relationships in high-

dimensional datasets and approximating system dynamics 

with high accuracy. The envisioned models in this study 

are designed to emulate the fidelity of multi-physics 

solvers while drastically reducing computational demands. 

To this end, a simulation dataset will be constructed based 

on rotary mechanism designs with varying geometries and 

operational conditions using tools such as Autodesk 

Fusion 360. This dataset will serve as the foundation for 

training one or more AI-based models, whose predictive 

accuracy, computational efficiency, and ability to 

represent cross-physical interactions will be thoroughly 

evaluated. Through this, the feasibility of AI-enhanced 

simulation techniques specifically tailored to rotary 

systems will be demonstrated. 

Key Contributions: 

• Unlike most existing studies that focus on a single 

physical domain (e.g., structural analysis) or 

simplified scenarios, this research targets the 

integrated modeling of coupled multi-physics 

behaviors. 
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• The effectiveness of advanced AI methods—such 

as Graph Neural Networks (GNN) and Fourier 

Neural Operators (FNO)—in learning spatio-

temporal patterns from multi-physics data will be 

investigated. 

• The study aims to contribute to the literature by 

introducing an open-source benchmark dataset 

for industrial rotary systems and developing a 

hybrid (physics + data-driven) AI model 

architecture. 

 

2. LITERATURE REVIEW 

Rotating mechanisms play a critical role in energy, 

manufacturing, and transportation systems, where system 

performance and reliability are governed by strongly 

coupled mechanical, thermal, and fluid-dynamic effects. 

High rotational speeds and complex loading conditions 

make single-physics analyses insufficient for accurately 

capturing system behavior. Previous studies have shown 

that neglecting thermo-mechanical coupling in gas turbine 

rotors can lead to severe underestimation of fatigue risks, 

while fluid-induced pressure fluctuations have been 

identified as a major source of vibration and efficiency loss 

in rotating machinery under transient conditions [30]. 

These findings highlight the necessity of integrated multi-

physics modeling for ensuring the safe and reliable 

operation of rotary systems. 

Despite their accuracy, high-fidelity multi-physics 

simulations are associated with substantial computational 

cost and long execution times, limiting their applicability 

in design optimization and rapid prototyping. To address 

this limitation, surrogate modeling techniques have been 

introduced as computationally efficient alternatives. Data-

driven surrogate models have demonstrated significant 

reductions in simulation time while preserving acceptable 

prediction accuracy for complex mechanical systems [10]. 

More recently, Physics-Informed Neural Networks have 

emerged as a promising approach by embedding governing 

physical equations directly into the learning process, 

enabling physically consistent predictions even under 

limited data availability [1], [5]. 

Advances in deep learning have further expanded the 

scope of surrogate modeling for rotating systems. Graph 

Neural Networks have been successfully applied to 

mechanical CAD representations, showing improved 

generalization across varying geometries through 

topology-aware learning [23]. In parallel, deep learning–

based surrogate models for fluid flow prediction have 

achieved computational speedups of up to two orders of 

magnitude compared to conventional solvers, 

demonstrating the potential of AI-assisted simulation 

frameworks [11]. However, most existing studies remain 

focused on single-physics domains or static operating 

conditions, indicating a clear research gap in fully coupled, 

AI-based multi-physics modeling of rotating mechanisms 

under dynamic conditions. This study aims to address this 

gap by proposing a structured and scalable framework for 

AI-assisted multi-physics modeling of rotary systems. 

 

 

Figure 1 Computational fluid dynamics (CFD) visualization showing 

velocity and vortex structures in a rotating cylindrical geometry 

(generated using COMSOL Multiphysics software). 

 

3. MATERIALS AND METHODS 

In this study, a parametric rotary mechanism model 

inspired by a generic turbine rotor was developed using 

Autodesk Fusion 360. The geometry was defined in a 

flexible manner to allow systematic variation of key design 

parameters, including blade thickness, length, curvature, 

and hub diameter. This parametric setup enabled the 

generation of multiple design configurations representing 

different mechanical operating scenarios and formed the 

basis for subsequent simulation and data generation 

processes. 

A coupled multi-physics simulation framework was 

employed to capture the interactions between structural, 

thermal, and fluid domains. Structural analyses were 

conducted to evaluate stress and deformation under 

centrifugal loading, thermal analyses were performed to 

assess temperature distribution, and computational fluid 

dynamics simulations were used to characterize airflow 

behavior and cooling performance. Each simulation was 

defined by a unique combination of geometric parameters 

and operating conditions such as rotational speed, material 

properties, and ambient temperature. Due to computational 

and hardware constraints, the target number of simulations 

was limited, and data augmentation strategies were 

considered to support initial model development. 

Simulation outputs were organized into a structured 

dataset linking input parameters to physical response 

variables, including maximum stress, temperature, 

deformation, and airflow characteristics. The data were 

normalized using min–max scaling and divided into 

training and testing subsets. Several artificial intelligence 
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models were explored, ranging from conventional artificial 

neural networks to physics-informed and graph-based 

architectures capable of incorporating physical constraints 

and spatial connectivity. Model performance was 

evaluated using standard regression metrics and 

computational efficiency indicators, with additional testing 

on unseen configurations to assess generalization 

capability. 

 

 
Figure 2. Internal structure of a horizontal-axis wind turbine illustrating 

key rotary components such as the rotor hub, gearbox, and generator 

(adapted from Siemens) 

 

4. METHODOLOGY 

This study employs an artificial intelligence–based 

framework to model the multi-physics behavior of rotary 

mechanisms with reduced computational cost. A 

parametric turbine-inspired rotor geometry was generated 

to represent diverse operating scenarios. Key geometric, 

physical, and environmental parameters were 

systematically varied to ensure sufficient design diversity 

for data-driven learning. 

Coupled structural, thermal, and fluid simulations were 

conducted to capture the interactions governing system 

behavior. Simulation outputs were structured into an 

input–output dataset linking operating conditions and 

geometry to physical response variables. Due to 

computational constraints, the dataset size was limited, and 

data augmentation techniques were considered to support 

early-stage model development. 

Several AI architectures were evaluated, ranging from 

conventional neural networks to physics-informed and 

graph-based models. Model performance was assessed 

using standard regression metrics and computational 

speedup indicators, with additional testing on unseen 

scenarios to evaluate generalization and feasibility for 

engineering applications(shown in Table 1). 

 

 

 

Table 1. AI Models Considered 

Model 

Type 

Purpose Key Advantage 

ANN 

(MLP) 

Baseline 

regression 

Simple and fast 

training 

PINN Physics-aware 

learning 

Reduced data 

dependency 

GNN Mesh-based 

representation 

Captures spatial 

topology 

Hybrid 

PINN–

GNN 

Advanced 

modeling 

Physical consistency 

+ geometry 

awareness 

 

4.1. Data Generation And Implementation 

Constraints 

The development of an AI-based model for predicting the 

multi-physics behavior of rotary mechanisms requires a 

sufficiently large and diverse simulation dataset. However, 

the planned large-scale data generation process could not 

be fully realized within the scope of this study due to 

practical limitations. Multi-physics simulations were 

found to be computationally expensive, with individual 

runs requiring several hours depending on model 

complexity, making extensive dataset generation 

infeasible on a single-machine setup. 

Hardware instability further constrained the 

implementation process. Recurrent system-level failures 

involving memory, processing units, and graphics 

hardware prevented long-duration simulations from being 

executed reliably. As a result, generating a dataset on the 

order of 10,000 samples which is typically required for 

training robust deep learning models would have required 

multiple years of continuous computation under the 

available resources. 

To mitigate these limitations, alternative modeling 

strategies were evaluated. Early-stage modeling using 

reduced datasets and physics-informed neural network 

architectures emerged as viable approaches for operating 

under limited data conditions. These findings highlight the 

importance of physics-aware learning and scalable 

computing infrastructures for AI-assisted multi-physics 

modeling. Future efforts will focus on small-data training 

strategies and physics-guided architectures to enable 

predictive modeling despite computational constraints. 

4.2. Dataset And Training Plan 

This section presents the dataset design strategy and 

training considerations for developing AI-based models to 

represent the multi-physics behavior of rotary 

mechanisms. The primary objective is to establish a 

predictive framework capable of estimating key 

engineering responses, including stress, temperature, 
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deformation, and flow-related quantities, under varying 

geometric and environmental conditions. 

The dataset structure is based on simulation-generated 

input–output pairs. Input features describe the operating 

conditions and geometric characteristics of the system, 

such as rotational speed, material type, key geometric 

parameters, ambient conditions, and cooling or airflow 

configuration. The corresponding outputs represent the 

physical response of the system, including maximum 

mechanical stress, surface temperature, total deformation, 

and representative flow velocity measures. This 

formulation enables the learning of coupled relationships 

between mechanical, thermal, and fluid domains. 

The required dataset size strongly depends on the selected 

modeling approach. Conventional feedforward and deep 

neural networks typically require several thousand to tens 

of thousands of samples to achieve robust generalization, 

whereas Physics-Informed Neural Networks can operate 

effectively with significantly fewer samples due to 

embedded physical constraints. Based on this trade-off, a 

target dataset size of approximately 10,000 samples was 

identified as a reference benchmark for data-driven models 

(shown in Table 2 and Table 3). 

 

Figure-3 Conceptual representation of AI-assisted modeling for rotary 

mechanisms, illustrating the integration of multi-physics simulation 

outputs with neural network architectures (created by the author). 

 

Table 2 Estimated Total Time for large datasets on a system  

System Type Parallel 

Simulations 

Estimated Total 

Time (10,000 

samples) 

1-Core PC 1 2.3 years 

8-Core 

Workstation 

4 ~6 months 

32-Core Server 16 ~1.5 months 

Amazon AWS 

(64 vCPU) 

32 ~3 weeks 

128-CPU 

University 

Cluster 

64 ~10 days 

 

Multi-physics simulations are computationally expensive, 

with an average execution time of approximately two 

hours per sample and longer runtimes for complex 

scenarios. Consequently, generating large datasets on a 

single-core system is impractical, motivating the use of 

parallel computing strategies. Parallel execution on multi-

core workstations, servers, or cloud-based platforms can 

reduce total data generation time from years to weeks. In 

cases where such resources are unavailable, alternative 

strategies such as small-data modeling, data augmentation, 

transfer learning, and physics-informed neural 

architectures provide feasible pathways for early-stage 

model development. 

Table 3 Estimated value and parameters 

Criterion Estimated Value 

Dataset size 10,000 samples 

Simulation time 2 hours/sample 

Total time (no 

parallelism) 

20,000 hours (~2.3 years) 

With parallel 

computing 

10 days – 6 months 

Alternative options PINN or small dataset 

modeling 

 

4.3. Probabilistic Success Estimation Under Resource 

Constraints 

This study includes a probabilistic analysis to assess the 

feasibility of successfully training an AI-based model for 

multi-physics modeling of rotary mechanisms under 

limited computational resources, time, and data 

availability. Success was defined as the completion of 

model training while achieving a minimum performance 

threshold of 𝑅2>0.85  A Monte Carlo–based simulation 

framework was employed to estimate success likelihood 

by combining key contributing factors related to hardware 

reliability, data availability, simulation completion, and 

modeling proficiency. 

The analysis indicates that, under the current project 

conditions, the probability of achieving a fully functional 

and accurate AI model is relatively low. This outcome is 

primarily driven by insufficient simulation data volume, 

instability in computational hardware, and long execution 

times associated with high-fidelity multi-physics 

simulations. These constraints significantly limit the 

ability to generate large datasets and maintain stable AI 

training workflows within the available timeframe. 

Despite the low estimated success probability, the analysis 

provides valuable insight into potential mitigation 

strategies. Physics-informed learning approaches, small-

data modeling supported by transfer learning, and access 

to parallel computing infrastructures emerge as effective 

pathways for improving feasibility. Rather than serving as 

a performance metric, this probabilistic assessment 
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functions as a decision-support tool, highlighting the 

conditions under which AI-assisted multi-physics 

modeling of rotary mechanisms becomes practically 

achievable. Relative contribution of key factors 

influencing the probability of successful AI-based multi-

physics model training under resource constraints (shown 

in Table 4). All values are normalized between 0 and 1. 

The weighted average is then compared to a success 

threshold (0.6). 

 

Table 4 Relative contribution of key factors influencing the 

probability of successful 

Factor Description Weight 

Hardware 

Stability 

System uptime and 

reliability 

0.25 

Normalized Data 

Volume 

Proportion of data 

generated compared to 

target 

0.30 

Simulation 

Completion Rate 

Percentage of 

simulations completed 

successfully 

0.20 

AI Expertise / 

Code Quality 

Modeling and training 

proficiency 

0.25 

 

The outcomes of this study indicate that the primary 

limitations were not conceptual or methodological, but 

rather operational and resource-related. The proposed AI-

based framework for multi-physics modeling of rotary 

mechanisms is theoretically sound; however, its practical 

realization was constrained by limited computational 

capacity, long simulation runtimes, and hardware 

instability. Addressing these constraints at earlier stages 

would have substantially increased the feasibility of 

achieving a fully trained and validated predictive model. 

A critical factor affecting success was the data generation 

pipeline. Multi-physics simulations involving coupled 

structural, thermal, and fluid domains are inherently time-

consuming. The study could have benefited from a staged 

simulation strategy, beginning with reduced-order or 

single-physics models to rapidly generate preliminary 

datasets. The use of simplified geometries and coarse 

meshes in early phases would have enabled faster iteration 

cycles, allowing model training to commence earlier and 

be progressively refined as higher-fidelity data became 

available. Access to parallel computing environments, 

such as institutional high-performance clusters or cloud-

based infrastructures, would have further reduced 

simulation bottlenecks. 

From a modeling perspective, reliance on data-intensive 

neural network architectures limited progress under small-

data conditions. Greater emphasis on physics-aware and 

data-efficient approaches such as Physics-Informed Neural 

Networks, transfer learning from related mechanical 

systems, and structured data augmentation could have 

improved learning performance despite limited sample 

availability. These strategies are particularly well-suited to 

engineering problems where governing equations and 

physical constraints are well understood and can be 

explicitly embedded into the learning process. 

Finally, project scope management played a decisive role. 

A more incremental research strategy focused on a 

narrowly defined proof of concept such as predicting a 

single performance metric under restricted operating 

conditions would have reduced complexity and facilitated 

earlier validation. By progressively expanding the model 

scope only after achieving stable intermediate results, the 

study could have maintained continuity despite hardware 

failures and time constraints. Overall, the lessons learned 

highlight the importance of adaptive planning, scalable 

computing resources, and physics-guided learning 

strategies for the successful deployment of AI-assisted 

multi-physics modeling under constrained research 

conditions. 

 

5. RESULTS AND CONCLUSION  

This study investigated the feasibility of applying artificial 

intelligence–based surrogate modeling to predict the multi-

physics behavior of rotary mechanisms. Conventional 

numerical approaches such as finite element analysis and 

computational fluid dynamics provide high-fidelity results 

but suffer from excessive computational cost when 

mechanical, thermal, and fluid domains are simultaneously 

considered. In this context, the study proposed an AI-

assisted modeling framework aimed at accelerating 

simulation-driven performance estimation while 

maintaining acceptable accuracy. 

Although full-scale model training and validation could 

not be completed due to hardware instability, limited 

computational resources, and insufficient simulation data, 

the study achieved several meaningful outcomes. A 

comprehensive literature review, a structured 

methodological framework, dataset planning, and a 

probabilistic feasibility analysis were successfully 

developed. Together, these contributions clarify the 

technical requirements, constraints, and risks associated 

with AI-driven multi-physics modeling and provide a 

transparent assessment of what is realistically achievable 

under constrained research conditions. 

Future research should prioritize data-efficient and 

physics-aware learning strategies to overcome the 

limitations identified in this work. Physics-Informed 

Neural Networks, small-scale proof-of-concept models, 

and parallel simulation pipelines represent promising 

directions for reducing data and computation demands. 
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With access to stable high-performance computing 

resources and a phased development strategy, the 

conceptual framework presented in this study can be 

extended toward practical AI-assisted tools for rotary 

mechanism analysis. Overall, the findings highlight both 

the potential and the prerequisites of integrating artificial 

intelligence into complex engineering simulation 

workflows. 

5.1. Contributions, Gains, and Implications For Future 

Work 

This study represents an exploratory investigation into the 

applicability of artificial intelligence–based modeling 

techniques for multi-physics engineering systems, with a 

particular focus on rotary mechanisms. Although a 

complete end-to-end implementation could not be 

achieved, the work delivers meaningful conceptual, 

technical, and methodological contributions that clarify 

both the opportunities and limitations of AI-assisted multi-

physics modeling under constrained research conditions. 

From an academic perspective, the study establishes a 

structured framework for integrating artificial intelligence 

with coupled mechanical, thermal, and fluid simulations. It 

systematically contrasts traditional high-fidelity 

simulation approaches with data-driven and physics-

informed alternatives in terms of computational cost, 

scalability, and feasibility. Furthermore, the work 

identifies and contextualizes data-efficient strategies—

such as Physics-Informed Neural Networks, transfer 

learning, and small-data modeling—as practical solutions 

for environments where large-scale simulation datasets 

and high-performance computing resources are 

unavailable. 

Technically, the study defines a complete input–output 

parameterization scheme suitable for AI-based modeling 

of rotary systems and presents a probabilistic success 

estimation methodology implemented in Python. This 

feasibility-driven analysis provides a rarely documented 

but highly practical decision-support perspective, 

demonstrating how hardware reliability, data volume, and 

modeling expertise collectively influence project 

outcomes in AI-driven engineering workflows. 

Beyond its technical scope, the study also yields 

significant methodological and experiential gains. It 

demonstrates how complex engineering problems can be 

decomposed into manageable analytical stages, even when 

implementation constraints prevent full execution. The 

insights gained regarding simulation planning, resource 

allocation, and adaptive modeling strategies are directly 

transferable to future research efforts in multi-physics 

systems. 

Overall, this work serves as a foundational reference for 

future studies aiming to bridge physics-based simulations 

and artificial intelligence. By documenting not only 

successful methodologies but also realistic constraints and 

mitigation strategies, the study contributes a transparent 

and practical roadmap for advancing AI-assisted modeling 

of complex engineering systems in both academic and 

applied contexts. 
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