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Abstract-- This study examines Al-based modeling for
multi-physics simulations of rotary mechanisms, focusing
on the complex interactions between mechanical, thermal,
and fluid domains. While conventional simulation
methods are often limited by high computational costs and
long processing times, this study evaluates data-driven and
physics-aware alternatives—specifically Artificial Neural
Networks (ANN), Physics-Informed Neural Networks
(PINN), and Graph Neural Networks (GNN). Due to
hardware and time constraints, rather than large-scale data
generation, the research establishes a conceptual and
methodological framework for integrating simulation-
aware Al into rotary systems. To assess practical
implementation challenges, a Monte Carlo-based
feasibility analysis was developed in Python; this analysis
estimated a success probability of approximately 0.77%
for training these models under current resource
limitations. Ultimately, this study contributes to the
literature by providing a structured roadmap for Al-
supported multi-physics modeling and offering practical
guidance for engineering applications operating under
significant computational constraints.
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1. INTRODUCTION

Modern engineering systems are becoming increasingly
complex, which in turn amplifies the need for high-fidelity
and multi-faceted simulation tools in both design and
analysis phases. Rotary mechanisms, in particular, are
characterized by intricate dynamic behaviors and operate
under diverse loading and environmental conditions. As
such, they inherently involve the interaction of multiple
physical domains such as structural mechanics, thermal
conduction, and fluid dynamics. While multi-physics
simulations provide high-resolution insights into these
interactions, their application is often limited by intensive
computational cost and long processing times.
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This study aims to develop an artificial intelligence (Al)-
supported modeling approach to predict the performance
of rotary mechanisms in a faster and more computationally
efficient manner. Instead of relying solely on traditional
simulation tools, the proposed method involves building
data-driven surrogate models and physics-informed neural
networks (PINNS) capable of approximating the complex
interrelations of multi-physics phenomena. These models
are expected to deliver rapid and accurate predictions of
system behavior under varying operating conditions and
design configurations, thereby accelerating the design
process and enabling real-time decision support.

Al-based modeling techniques have recently gained
significant traction in engineering due to their ability to
enhance simulation speed and support optimization
workflows. Deep learning architectures, in particular, are
proficient in capturing nonlinear relationships in high-
dimensional datasets and approximating system dynamics
with high accuracy. The envisioned models in this study
are designed to emulate the fidelity of multi-physics
solvers while drastically reducing computational demands.

To this end, a simulation dataset will be constructed based
on rotary mechanism designs with varying geometries and
operational conditions using tools such as Autodesk
Fusion 360. This dataset will serve as the foundation for
training one or more Al-based models, whose predictive
accuracy, computational efficiency, and ability to
represent cross-physical interactions will be thoroughly
evaluated. Through this, the feasibility of Al-enhanced
simulation techniques specifically tailored to rotary
systems will be demonstrated.

Key Contributions:

e Unlike most existing studies that focus on a single
physical domain (e.g., structural analysis) or
simplified scenarios, this research targets the
integrated modeling of coupled multi-physics
behaviors.
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e  The effectiveness of advanced Al methods—such
as Graph Neural Networks (GNN) and Fourier
Neural Operators (FNO)—in learning spatio-
temporal patterns from multi-physics data will be
investigated.

e The study aims to contribute to the literature by
introducing an open-source benchmark dataset
for industrial rotary systems and developing a
hybrid (physics + data-driven) Al model
architecture.

2. LITERATURE REVIEW

Rotating mechanisms play a critical role in energy,
manufacturing, and transportation systems, where system
performance and reliability are governed by strongly
coupled mechanical, thermal, and fluid-dynamic effects.
High rotational speeds and complex loading conditions
make single-physics analyses insufficient for accurately
capturing system behavior. Previous studies have shown
that neglecting thermo-mechanical coupling in gas turbine
rotors can lead to severe underestimation of fatigue risks,
while fluid-induced pressure fluctuations have been
identified as a major source of vibration and efficiency loss
in rotating machinery under transient conditions [30].
These findings highlight the necessity of integrated multi-
physics modeling for ensuring the safe and reliable
operation of rotary systems.

Despite their accuracy, high-fidelity —multi-physics
simulations are associated with substantial computational
cost and long execution times, limiting their applicability
in design optimization and rapid prototyping. To address
this limitation, surrogate modeling techniques have been
introduced as computationally efficient alternatives. Data-
driven surrogate models have demonstrated significant
reductions in simulation time while preserving acceptable
prediction accuracy for complex mechanical systems [10].
More recently, Physics-Informed Neural Networks have
emerged as a promising approach by embedding governing
physical equations directly into the learning process,
enabling physically consistent predictions even under
limited data availability [1], [5].

Advances in deep learning have further expanded the
scope of surrogate modeling for rotating systems. Graph
Neural Networks have been successfully applied to
mechanical CAD representations, showing improved
generalization across varying geometries through
topology-aware learning [23]. In parallel, deep learning—
based surrogate models for fluid flow prediction have
achieved computational speedups of up to two orders of
magnitude  compared to  conventional  solvers,
demonstrating the potential of Al-assisted simulation
frameworks [11]. However, most existing studies remain
focused on single-physics domains or static operating
conditions, indicating a clear research gap in fully coupled,
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Al-based multi-physics modeling of rotating mechanisms
under dynamic conditions. This study aims to address this
gap by proposing a structured and scalable framework for
Al-assisted multi-physics modeling of rotary systems.

Figure 1 Computational fluid dynamics (CFD) visualization showing
velocity and vortex structures in a rotating cylindrical geometry
(generated using COMSOL Multiphysics software).

3. MATERIALS AND METHODS

In this study, a parametric rotary mechanism model
inspired by a generic turbine rotor was developed using
Autodesk Fusion 360. The geometry was defined in a
flexible manner to allow systematic variation of key design
parameters, including blade thickness, length, curvature,
and hub diameter. This parametric setup enabled the
generation of multiple design configurations representing
different mechanical operating scenarios and formed the
basis for subsequent simulation and data generation
processes.

A coupled multi-physics simulation framework was
employed to capture the interactions between structural,
thermal, and fluid domains. Structural analyses were
conducted to evaluate stress and deformation under
centrifugal loading, thermal analyses were performed to
assess temperature distribution, and computational fluid
dynamics simulations were used to characterize airflow
behavior and cooling performance. Each simulation was
defined by a unique combination of geometric parameters
and operating conditions such as rotational speed, material
properties, and ambient temperature. Due to computational
and hardware constraints, the target number of simulations
was limited, and data augmentation strategies were
considered to support initial model development.

Simulation outputs were organized into a structured
dataset linking input parameters to physical response
variables, including maximum stress, temperature,
deformation, and airflow characteristics. The data were
normalized using min-max scaling and divided into
training and testing subsets. Several artificial intelligence
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models were explored, ranging from conventional artificial
neural networks to physics-informed and graph-based
architectures capable of incorporating physical constraints
and spatial connectivity. Model performance was
evaluated using standard regression metrics and
computational efficiency indicators, with additional testing
on unseen configurations to assess generalization
capability.

=
i
Figure 2. Internal structure of a horizontal-axis wind turbine illustrating
key rotary components such as the rotor hub, gearbox, and generator

(adapted from Siemens)

4. METHODOLOGY

This study employs an artificial intelligence—based
framework to model the multi-physics behavior of rotary
mechanisms with reduced computational cost. A
parametric turbine-inspired rotor geometry was generated
to represent diverse operating scenarios. Key geometric,
physical, and environmental parameters  were
systematically varied to ensure sufficient design diversity
for data-driven learning.

Coupled structural, thermal, and fluid simulations were
conducted to capture the interactions governing system
behavior. Simulation outputs were structured into an
input-output dataset linking operating conditions and
geometry to physical response variables. Due to
computational constraints, the dataset size was limited, and
data augmentation techniques were considered to support
early-stage model development.

Several Al architectures were evaluated, ranging from
conventional neural networks to physics-informed and
graph-based models. Model performance was assessed
using standard regression metrics and computational
speedup indicators, with additional testing on unseen
scenarios to evaluate generalization and feasibility for
engineering applications(shown in Table 1).
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Table 1. Al Models Considered

Model Purpose Key Advantage

Type

ANN Baseline Simple and fast

(MLP) regression training

PINN Physics-aware Reduced data
learning dependency

GNN Mesh-based Captures spatial
representation topology

Hybrid Advanced Physical consistency

PINN- modeling + geometry

GNN awareness

4.1. Data Generation And Implementation

Constraints

The development of an Al-based model for predicting the
multi-physics behavior of rotary mechanisms requires a
sufficiently large and diverse simulation dataset. However,
the planned large-scale data generation process could not
be fully realized within the scope of this study due to
practical limitations. Multi-physics simulations were
found to be computationally expensive, with individual
runs requiring several hours depending on model
complexity, making extensive dataset generation
infeasible on a single-machine setup.

Hardware  instability  further  constrained  the
implementation process. Recurrent system-level failures
involving memory, processing units, and graphics
hardware prevented long-duration simulations from being
executed reliably. As a result, generating a dataset on the
order of 10,000 samples which is typically required for
training robust deep learning models would have required
multiple years of continuous computation under the
available resources.

To mitigate these limitations, alternative modeling
strategies were evaluated. Early-stage modeling using
reduced datasets and physics-informed neural network
architectures emerged as viable approaches for operating
under limited data conditions. These findings highlight the
importance of physics-aware learning and scalable
computing infrastructures for Al-assisted multi-physics
modeling. Future efforts will focus on small-data training
strategies and physics-guided architectures to enable
predictive modeling despite computational constraints.

4.2. Dataset And Training Plan

This section presents the dataset design strategy and
training considerations for developing Al-based models to
represent the multi-physics behavior of rotary
mechanisms. The primary objective is to establish a
predictive framework capable of estimating key
engineering responses, including stress, temperature,
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deformation, and flow-related quantities, under varying
geometric and environmental conditions.

The dataset structure is based on simulation-generated
input—output pairs. Input features describe the operating
conditions and geometric characteristics of the system,
such as rotational speed, material type, key geometric
parameters, ambient conditions, and cooling or airflow
configuration. The corresponding outputs represent the
physical response of the system, including maximum
mechanical stress, surface temperature, total deformation,
and representative flow velocity measures. This
formulation enables the learning of coupled relationships
between mechanical, thermal, and fluid domains.

The required dataset size strongly depends on the selected
modeling approach. Conventional feedforward and deep
neural networks typically require several thousand to tens
of thousands of samples to achieve robust generalization,
whereas Physics-Informed Neural Networks can operate
effectively with significantly fewer samples due to
embedded physical constraints. Based on this trade-off, a
target dataset size of approximately 10,000 samples was
identified as a reference benchmark for data-driven models
(shown in Table 2 and Table 3).

Al-Assisted Rotary
Mechanism Modeling
and Performance
Prediction for Multi-
Physics Simulations

Figure-3 Conceptual representation of Al-assisted modeling for rotary
mechanisms, illustrating the integration of multi-physics simulation
outputs with neural network architectures (created by the author).

Table 2 Estimated Total Time for large datasets on a system

System Type Parallel Estimated Total

Simulations Time (10,000
samples)

1-Core PC 1 2.3 years

8-Core 4 ~6 months

Workstation

32-Core Server 16 ~1.5 months

Amazon AWS 32 ~3 weeks

(64 vCPU)

128-CPU 64 ~10 days

University

Cluster
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Multi-physics simulations are computationally expensive,
with an average execution time of approximately two
hours per sample and longer runtimes for complex
scenarios. Consequently, generating large datasets on a
single-core system is impractical, motivating the use of
parallel computing strategies. Parallel execution on multi-
core workstations, servers, or cloud-based platforms can
reduce total data generation time from years to weeks. In
cases where such resources are unavailable, alternative
strategies such as small-data modeling, data augmentation,
transfer  learning, and physics-informed  neural
architectures provide feasible pathways for early-stage
model development.

Table 3 Estimated value and parameters

Estimated Value
10,000 samples
2 hours/sample

Criterion
Dataset size
Simulation time

Total time (no 20,000 hours (~2.3 years)

parallelism)

With parallel 10 days — 6 months

computing

Alternative options PINN or small dataset
modeling

4.3. Probabilistic Success Estimation Under Resource
Constraints

This study includes a probabilistic analysis to assess the
feasibility of successfully training an Al-based model for
multi-physics modeling of rotary mechanisms under
limited computational resources, time, and data
availability. Success was defined as the completion of
model training while achieving a minimum performance
threshold of R?>0.85 A Monte Carlo-based simulation
framework was employed to estimate success likelihood
by combining key contributing factors related to hardware
reliability, data availability, simulation completion, and
modeling proficiency.

The analysis indicates that, under the current project
conditions, the probability of achieving a fully functional
and accurate Al model is relatively low. This outcome is
primarily driven by insufficient simulation data volume,
instability in computational hardware, and long execution
times associated with high-fidelity —multi-physics
simulations. These constraints significantly limit the
ability to generate large datasets and maintain stable Al
training workflows within the available timeframe.

Despite the low estimated success probability, the analysis
provides valuable insight into potential mitigation
strategies. Physics-informed learning approaches, small-
data modeling supported by transfer learning, and access
to parallel computing infrastructures emerge as effective
pathways for improving feasibility. Rather than serving as
a performance metric, this probabilistic assessment
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functions as a decision-support tool, highlighting the
conditions under which Al-assisted multi-physics
modeling of rotary mechanisms becomes practically
achievable. Relative contribution of key factors
influencing the probability of successful Al-based multi-
physics model training under resource constraints (shown
in Table 4). All values are normalized between 0 and 1.
The weighted average is then compared to a success
threshold (0.6).

Table 4 Relative contribution of key factors influencing the
probability of successful

Factor Description Weight
Hardware System uptime and 0.25
Stability reliability
Normalized Data Proportion of data 0.30
Volume generated compared to
target
Simulation Percentage of 0.20
Completion Rate  simulations completed
successfully
Al Expertise / Modeling and training 0.25

Code Quality proficiency

The outcomes of this study indicate that the primary
limitations were not conceptual or methodological, but
rather operational and resource-related. The proposed Al-
based framework for multi-physics modeling of rotary
mechanisms is theoretically sound; however, its practical
realization was constrained by limited computational
capacity, long simulation runtimes, and hardware
instability. Addressing these constraints at earlier stages
would have substantially increased the feasibility of
achieving a fully trained and validated predictive model.

A critical factor affecting success was the data generation
pipeline. Multi-physics simulations involving coupled
structural, thermal, and fluid domains are inherently time-
consuming. The study could have benefited from a staged
simulation strategy, beginning with reduced-order or
single-physics models to rapidly generate preliminary
datasets. The use of simplified geometries and coarse
meshes in early phases would have enabled faster iteration
cycles, allowing model training to commence earlier and
be progressively refined as higher-fidelity data became
available. Access to parallel computing environments,
such as institutional high-performance clusters or cloud-
based infrastructures, would have further reduced
simulation bottlenecks.

From a modeling perspective, reliance on data-intensive
neural network architectures limited progress under small-
data conditions. Greater emphasis on physics-aware and
data-efficient approaches such as Physics-Informed Neural

33

Networks, transfer learning from related mechanical
systems, and structured data augmentation could have
improved learning performance despite limited sample
availability. These strategies are particularly well-suited to
engineering problems where governing equations and
physical constraints are well understood and can be
explicitly embedded into the learning process.

Finally, project scope management played a decisive role.
A more incremental research strategy focused on a
narrowly defined proof of concept such as predicting a
single performance metric under restricted operating
conditions would have reduced complexity and facilitated
earlier validation. By progressively expanding the model
scope only after achieving stable intermediate results, the
study could have maintained continuity despite hardware
failures and time constraints. Overall, the lessons learned
highlight the importance of adaptive planning, scalable
computing resources, and physics-guided learning
strategies for the successful deployment of Al-assisted
multi-physics modeling under constrained research
conditions.

5. RESULTS AND CONCLUSION

This study investigated the feasibility of applying artificial
intelligence—based surrogate modeling to predict the multi-
physics behavior of rotary mechanisms. Conventional
numerical approaches such as finite element analysis and
computational fluid dynamics provide high-fidelity results
but suffer from excessive computational cost when
mechanical, thermal, and fluid domains are simultaneously
considered. In this context, the study proposed an Al-
assisted modeling framework aimed at accelerating
simulation-driven  performance  estimation  while
maintaining acceptable accuracy.

Although full-scale model training and validation could
not be completed due to hardware instability, limited
computational resources, and insufficient simulation data,
the study achieved several meaningful outcomes. A
comprehensive literature  review, a  structured
methodological framework, dataset planning, and a
probabilistic  feasibility analysis were successfully
developed. Together, these contributions clarify the
technical requirements, constraints, and risks associated
with Al-driven multi-physics modeling and provide a
transparent assessment of what is realistically achievable
under constrained research conditions.

Future research should prioritize data-efficient and
physics-aware learning strategies to overcome the
limitations identified in this work. Physics-Informed
Neural Networks, small-scale proof-of-concept models,
and parallel simulation pipelines represent promising
directions for reducing data and computation demands.
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With access to stable high-performance computing
resources and a phased development strategy, the
conceptual framework presented in this study can be
extended toward practical Al-assisted tools for rotary
mechanism analysis. Overall, the findings highlight both
the potential and the prerequisites of integrating artificial
intelligence into complex engineering simulation
workflows.

5.1. Contributions, Gains, and Implications For Future
Work

This study represents an exploratory investigation into the
applicability of artificial intelligence—based modeling
techniques for multi-physics engineering systems, with a
particular focus on rotary mechanisms. Although a
complete end-to-end implementation could not be
achieved, the work delivers meaningful conceptual,
technical, and methodological contributions that clarify
both the opportunities and limitations of Al-assisted multi-
physics modeling under constrained research conditions.

From an academic perspective, the study establishes a
structured framework for integrating artificial intelligence
with coupled mechanical, thermal, and fluid simulations. It
systematically ~ contrasts  traditional  high-fidelity
simulation approaches with data-driven and physics-
informed alternatives in terms of computational cost,
scalability, and feasibility. Furthermore, the work
identifies and contextualizes data-efficient strategies—
such as Physics-Informed Neural Networks, transfer
learning, and small-data modeling—as practical solutions
for environments where large-scale simulation datasets
and high-performance computing  resources are
unavailable.

Technically, the study defines a complete input—output
parameterization scheme suitable for Al-based modeling
of rotary systems and presents a probabilistic success
estimation methodology implemented in Python. This
feasibility-driven analysis provides a rarely documented
but highly practical decision-support perspective,
demonstrating how hardware reliability, data volume, and
modeling expertise  collectively influence project
outcomes in Al-driven engineering workflows.

Beyond its technical scope, the study also vyields
significant methodological and experiential gains. It
demonstrates how complex engineering problems can be
decomposed into manageable analytical stages, even when
implementation constraints prevent full execution. The
insights gained regarding simulation planning, resource
allocation, and adaptive modeling strategies are directly
transferable to future research efforts in multi-physics
systems.

Overall, this work serves as a foundational reference for
future studies aiming to bridge physics-based simulations
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and artificial intelligence. By documenting not only
successful methodologies but also realistic constraints and
mitigation strategies, the study contributes a transparent
and practical roadmap for advancing Al-assisted modeling
of complex engineering systems in both academic and
applied contexts.
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