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Abstract—Navigating autonomously is a crucial capability for 
modern robots, as navigating in unknown and constantly altering 
environments is not an easy task. A powerful reinforcement 
learning method known as Deep Q-Learning (DQL) has recently 
been introduced for decision-making in robotic navigation; 
nevertheless, it is known to deliver subpar results due to its 
overreliance on hyperparameters, including learning rate, 
discount factor, exploration strategy, and even network 
architecture. This paper deals with the issue of hyperparameter 
optimization tuning via Bayesian Optimization (BO) on a DQN 
(Deep Q Network) focusing on real-time navigation tasks 
attempting to enhance convergence speed, sample efficiency, and 
generalization. We present a new BO-DQN framework, which 
uses \textit{Gaussian process} surrogate models with the UCB 
acquisition function, which allows for better refinement during 
later iterations of DQN training. An array of simulations and 
real-world robotic environments were tested, with results 
indicating that the BO-tuned models... outperform both grid and 
random search baselines with a greater rate of convergence, 
increased stability, and improved accuracy on the tasks. 
Furthermore, the proposed method performed remarkably well 
when exposed to noisy sensors and changing task complexities. 
This work offers a practical approach to deploying DQN policies 
on mobile robots working in uncertain conditions due to its low 
sample requirement and its real-time responses. 

Keywords—Deep Q-Learning, Bayesian Optimization, Robotic 
Navigation, Hyperparameter Tuning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Özetçe—Otonom olarak gezinmek, bilinmeyen ve sürekli 
değişen ortamlarda gezinmek kolay bir iş olmadığından, modern 
robotlar için hayati bir yetenektir. Derin Q-Öğrenme (DQL) 
olarak bilinen güçlü bir takviyeli öğrenme yöntemi, robotik 
gezinmede karar alma için yakın zamanda tanıtıldı; ancak, 
öğrenme oranı, iskonto faktörü, keşif stratejisi ve hatta ağ 
mimarisi gibi hiperparametrelere aşırı güvenmesi nedeniyle vasat 
sonuçlar verdiği bilinmektedir. Bu makale, yakınsama hızını, 
örnek verimliliğini ve genellemeyi artırmaya çalışan gerçek 
zamanlı gezinme görevlerine odaklanan bir DQN (Derin Q Ağı) 
üzerinde Bayes Optimizasyonu (BO) yoluyla hiperparametre 
optimizasyonu ayarlama sorununu ele almaktadır. UCB edinme 
işleviyle \textit{Gaussian süreci} vekil modellerini kullanan ve 
DQN eğitiminin sonraki yinelemeleri sırasında daha iyi iyileştirme 
sağlayan yeni bir BO-DQN çerçevesi sunuyoruz. Bir dizi 
simülasyon ve gerçek dünya robotik ortamı test edildi ve sonuçlar 
BO ayarlı modellerin... hem ızgara hem de rastgele arama temel 
çizgilerini daha yüksek bir yakınsama oranı, artan kararlılık ve 
görevlerde iyileştirilmiş doğrulukla geride bıraktığını gösterdi. 
Dahası, önerilen yöntem gürültülü sensörlere ve değişen görev 
karmaşıklıklarına maruz kaldığında dikkate değer bir performans 
gösterdi. Bu çalışma, düşük örnek gereksinimi ve gerçek zamanlı 
yanıtları nedeniyle belirsiz koşullarda çalışan mobil robotlarda 
DQN politikalarının dağıtımına yönelik pratik bir yaklaşım 
sunmaktadır. 

 
Anahtar Kelimeler—Derin Q-Öğrenme, Bayes Optimizasyonu, 

Robotik Navigasyon, Hiperparametre Ayarı. 
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I. INTRODUCTION 

A. The Rise of Deep Reinforcement Learning in Autonomous 
Robotics 

Deep learning and reinforcement learning are now 
embedded in the algorithms driving intelligent robots that are 
widely available to the public. The field of AI is advancing at 
an exponential rate, making once complex tasks doable within 
an incredibly short timeframe [1]. The frame of reference has 
shifted towards more complex applications, from automating 
guided vehicles to building intelligent agents that dynamically 
make decisions in real time within unpredictable, open-ended 
operational settings [2]. 

The Triadic Framework illustrated in Figure 1 displays key 
steps in realizing intelligent robotic systems where 
incorporating deep learning alongside neural networks 
methods have driven the steepest advancements. The ability of 
sensors, such as LiDAR cameras, to provide considerable 
amounts of information, coupled with high-performance 
processors, allows for the implementation of advanced Q-
learning strategies [3]. As a result, robots are now capable of 
autonomously learning to navigate in unfamiliar environments 
devoid of predefined maps [4]. 

Regardless, there are still some weaknesses. The 
performance of DQNs is still very sensitive to the 
hyperparameters that control learning behaviour. Adjusting 
parameters poorly can lead to convergence taking too long, 
becoming unstable, or completely failing to learn [5]. These 
issues are common in real-time robotics, for example, where 
training data is expensive to acquire, there are safety 

restrictions on exploration, and computational resources are 
limited. 

  

B. Challenges of Hyperparameter Tuning in Q-Learning-
Based Navigation 

Interactions with the environment generate data in 
reinforcement learning are non-IID and come with rewards that 
are delayed. Unlike with supervised learning models, the lack 
of independence means the data will lack a certain level of 
homogeneity. This makes shifting the hyperparameters of 
DQNs not just computationally expensive, but complex, 
requiring nonlinear model predictive control of the learning 
dynamics during model deployment [6]. Learning parameters 
like the learning rate or discount factor, exploration to replay 
buffer ratio, and batch size have a profound effect on the 
efficiency, stability, and optimality of the resulting policy [7]. 

For instance, an excessively high learning rate can make the 
Q-network diverge, while an extremely low value would slow 
down the rate of convergence. Equally, the discount factor 
determines the agent’s bias towards immediate or long-term 
rewards and incorrect values may lead to inefficient plans. The 
exploration-exploitation trade off controlled by epsilon (ε) in ε-
greedy policies influences the extent to which the agent 
samples the environment, while the deep network's architecture 
determines its generalization and capacity [8]. In support of 
these arguments, we provide Table 1. This table includes the 
most utilized hyperparameters within Deep Q-Networks, their 
corresponding ranges, and the qualitative impact on 
performance. 

 

Table 1: Common Hyperparameters in Deep Q-Networks and Their Impact on Performance 

Hyperparameter Typical Range Impact on Performance 

Learning Rate 1e-5 to 1e-2 Controls convergence speed; too high causes divergence 

Discount Factor (γ) 0.90 to 0.99 Affects long-term vs short-term reward weighting 

Exploration Rate (ε) 0.1 to 1.0 Balances exploration vs exploitation; critical for early learning 

Replay Buffer Size 10,000 to 1,000,000 Larger buffers improve stability but increase memory cost 

Batch Size 32 to 256 Impacts gradient stability and convergence noise 

Target Network Update Frequency 100 to 10,000 steps Stabilizes learning; low frequency may slow convergence 

Network Architecture (Layers/Units) 1–3 layers, 64–512 units Deeper/wider networks increase capacity but risk overfitting 

 

This table serves to demonstrate the statement in the case of 
robotic systems that, tuning each component to achieve 
optimal results requires grappling with a multifaceted 
interplay of parameters as well as the optimization's intricate 
design space. In addition, associating every single parameter 
with a distinct value reveals the extensive freedom available. 
Using manual tuning or a brute-force grid search becomes not 
only inefficient from a computational resource perspective, but 
time-consuming as well. As complexity and non-linearity in 
robotic environments increases, so does the need for real-time, 
sample-efficient learning paradigms, elevating the importance 
of systematic hyperparameter optimization.  

 

C. Bayesian Optimization as a Solution to Sample-Efficient 
Learning 

Bayesian Optimization (BO) is one of the most effective 
methods for automatic hyperparameter optimization. BO is 

useful in scenarios where there is both high expense and noise 
associated with function evaluations [9]. Unlike grid or random 
search methods, BO employs a probabilistic surrogate model, 
most frequently a Gaussian Process (GP) as well as acquisition 
functions that assist in choosing the next evaluation point. 
These features allow it to balance the exploration of uncertain 
areas and the exploitation of the more promising, richer regions 
within the search space [10]. 

When considering the application of Bayesian Optimization 
within the context of DQNs for robotic navigation, there are 
multiple advantages. It is sample-efficient, which is crucial 
when data is expensive to gather from running episodes in 
simulated or real environments. Its robust framework aware of 
uncertainty is also beneficial as it is tolerant to noise in 
feedback, non-convexity, and other things common during RL 
learning curve processes [11]. Lastly, BO provides 
interpretability due to the posterior distributions placed over 
the objective landscape which offers vital information about 
hyperparameter sensitivity, interdependencies, and more. 
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The application of BO to DQN hyperparameter tuning poses 
unique challenges such as defining informative priors, dealing 
with mixed discrete-continuous spaces, and parallelizing 
evaluations. Nevertheless, it enables the creation of automated 
learning pipelines where the honed policies are self-adjusting, 
requiring less human interaction and faster deployment in 
practical robotics scenarios.  

  

D. Research Objectives and Novel Contributions 

This study presents an optimized application of Bayesian 
Optimization to Deep Q-Learning within the context of robotic 
navigation, positing that BO’s methods will notably increase 
training efficiency, convergence consistency, and 
generalization capability compared to conventional 
approaches. 

The key contributions of this work are as follows: 

•  We demonstrate the first implementation of a real-time 
robotic navigation task using a complete supervisory 
control BO-DQN design that assimilates GP modelling 
with UCB acquisition and deep Q-network (DQN) 
training. 

•  We empirically evaluate BO’s performance against grid 
search and random search over a set of simulated 
environments with varying task complexities in terms of 
accuracy, convergence time, policy robustness, and 
overall efficiency. 

•  We established for the first time evaluation criteria and 
space for guided reward functions that consider real-
world challenges like obstacle avoidance, path 
optimization, and optimal quantifiable latency. 

•  We analyse and report the individual and collective 
influences of task noise, hyperparameter variation, and 
environmental perturbations on system trajectories 
through comprehensive hyperparameter framework 
design. 

•  We outline the operational state of systems using latency 
benchmarks on parameter samples, adaptation, and 
inference under different robot platforms and sensors 
providing for multiconfiguration system dynamics. 

In particular, this paper aims to improve the autonomous 
learning within robotics by guiding the readers through the 
steps to implement Bayesian Optimization for probabilistic, 
data-conservative hyperparameter tuning to show how much 
value it provides in real-time and dynamic systems with 
constraints. 

  

II. BACKGROUND AND RELATED WORK 

A. Overview of Deep Q-Learning for Navigation 

Deep Q-Learning Networks (DQNs) have rapidly emerged 
as a primary structure in autonomous robotic navigation 
because DQNs enable agents to learn optimal policies in 
highly complex and continuous environments. DQNs permit 
an agent to evaluate the expected cumulative reward for 
performing an action and follow a particular set of policies by 
estimating the Q-function [12]. Unlike traditional control-
based approaches, DQNs allow for policy generation from 
exteroceptive and sensory data such as images, lidar point 
clouds, and even proprioceptive data, thus removing the need 
for expert-crafted features or heuristics through manual 
engineering [13]. 

In robotic navigation, DQNs are frequently applied to 
problems involving sequential decision making under 
uncertainty such as obstacle avoidance, goal seeking, corridor 
following, and map-less exploration [14]. The architecture of 
the algorithm includes components that facilitate experience 
replay, target network freezing, and value bootstrapping, all of 
which aid in the smooth training over long episodes in partially 
observable environments. However, despite the remarkable 
performance demonstrated by DQNs in benchmarked 
simulated platforms, their true success in the real world is 
highly dependent on the proper selection and adjustment of 
hyperparameter settings [15]. 

 

B. Role of Hyperparameters in Q-Learning Stability 

The configuration of hyperparameters directly influences the 
execution and the stability of DQNs. The values of parameters 
like the learning rate, discount factor, exploration rate, batch 
size, and frequency of updates dominantly determine how an 
agent learns. If these parameters are tactically misconfigured, it 
may lead to extreme outcomes such as uncontrolled changes in 
the estimated rewards, undue oscillations in the set policies, or 
over-specialization due to early convergence. 

The narrow range of available training data, the potential for 
physical collisions, and tight resource limits makes 
hyperparameter sensitivity especially important in robotics 
[16]. As for navigation tasks, an agent can get trapped in an 
exploration setting where it has access to many clutter free 
regions but it does not safely perceive many needed passages. 
Additionally, an unsuited discount factor can lead to short-
sighted decisions instead of encouraging behaviour more 
aligned to reaching global goals. Choices in network 
architecture, for instance, depth and width, also determine how 
well the model generalizes across state transitions [17]. 

To demonstrate the impact of hyperparameter choices on 
training dynamics, Figure 1 shows the average reward per 
episode for models that were trained with ‘tuned’ (fixed) 
hyperparameters versus those trained with randomly sampled 
hyperparameters. The smoother and more stable ‘convergence’ 
presented in the episode number results for the model trained 
with fixed hyperparameters indicates that smoother 
convergence tends to be more stable, while the random results 
exhibit a much more random configuration. These findings 
support the need for systematic optimization frameworks 
design aimed at ensuring effective learning processes. 

 

Figure 1: Training Stability with Fixed vs Random 
Hyperparameters 
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C. Bayesian Optimization in Machine Learning Contexts 

Bayesian Optimization has become one of the most popular 
methods for hyperparameter searching due to its effectiveness 
in machine learning models with expensive or noisy objective 
function evaluations. BO approaches the optimization problem 
in a Bayesian way, creating a surrogate model, often a 
Gaussian Process GP over the objective function, optimizes it 
using acquisition functions like Expected Improvement EI and 
Upper Confidence Bound UCB, which measure the confidence 
level of possible solutions and reward. 

In the scope of reinforcement learning, BO has been applied 
to policy tuning, reward shaping, and neural architecture 
search [18]. Its high sample efficiency is preferable in robotics 
configurations, where each trial translates to a resource and 
time-demanding episode. In addition, BO's mixed parameter 
space treatment, noise, and uncertainty quantification make it 
superior to random or exhaustive search strategies [19]. 

The application of BO in DQNs has not been researched in 
detail, particularly with regards to real-time robotic 
navigation. The objective of this research is to fill this gap by 
investigating BO's impact on DQN performance with varying 
task environments, model architectures, and deployment 
scenarios.  

 

D. Comparison with Grid Search and Random Search 
Approaches 

Most approaches to hyperparameter tuning in DQNs have 
historically relied on grid search or random search. Grid 
search attempts to determine the parameter value that offers 
the best performance within a specified range. It is 
straightforward to implement, but becomes computationally 
intractable very quickly when the hyperparameter space 
increases in dimension. It also fails to exploit the full 
scalability of the model because it often misses the optimal 
configuration because of its low resolution. 

Random search offers more efficient results by selecting a 
sample from a specified set of parameters for examination. 
Although it does find useful configurations faster than grid 
search, it does not use a mechanism to remember useful 
strategies from previously explored search regions, nor does it 

have an adaptive strategy that can shift focus to more 
promising regions within the search space. In contrast, 
Bayesian Optimization performs the opposite; it refines its 
search pattern through previously observed outcomes, offering 
a search path that is more likely to reach the endpoint faster 
and with fewer attempts. 

Figure 2 illustrates these results by plotting the optimization 
method’s success rate on a variety of navigation tasks, which 
clearly depicts the differences in effectiveness for each 
algorithm. BO had the best average success rate, achieving 
83% with grid search and random search achieving 68% and 
61% respectively. These results demonstrate the efficiency of 
BO for improving performance in DQNs. 

 

Figure 2: Success Rates of Various Optimization Methods 
Across Benchmarks 

 

For a more comprehensive overview of the research 
framework, Table 2 provides a comparative overview of the 
most recent studies which have incorporated deep 
reinforcement learning to navigate a robot’s movement. It 
includes the algorithms employed alongside the derived 
optimizations as well as the main benchmarks of interest. 
Earlier works in the table have continued to use some form of 
manual or exhaustive tuning techniques, but recent attempts 
like Jeng & Chiang (2023) have started utilizing Bayesian 
optimization, specifically targeting policy stabilization and 
convergence acceleration.  

 

Table 2: Summary of Related Studies in Robotic Navigation with DRL 

Study Method Used Optimization Strategy Performance Focus 

Yu et al. (2023) [20] DQN with manual tuning Heuristic exploration Obstacle avoidance 

Katsumi et al. (2021) [21] DDPG with grid search Exhaustive parameter grid Energy efficiency 

Chen et al. (2021) [22] PPO with domain randomization Task-agnostic noise injection Terrain generalization 

Jeng & Chiang (2023) [23] TD3 with Bayesian tuning Bayesian surrogate modelling Convergence speed 

 

This review shows that while BO in reinforcement learning 
is becoming more popular, its application in deep Q-learning 
for navigation remains underdeveloped. Furthermore, most of 
the available works do not seem to comprehensively study the 
configuration of the hyperparameters or the practical 
deployment scenarios. This gap is what we aim to address, 
through robust analysis of BO algorithms in robotic navigation 
both in simulation environments and physical hardware.  

  

 

III. PROPOSED FRAMEWORK: BO-DQN ARCHITECTURE 

A. System Architecture of the Robot and Environment 

The BO-DQN architecture proposed in this paper is cantered 
on a modular robotic learning stack for continuous navigation 
in real-time and autonomous discovery of unknown 
environments. The system consists of a mobile robot 
(simulated or physical) equipped with range sensors such as 
lidar or ultrasonic, localization systems like odometry or 
SLAM, and a finite Action Space for Motion Primitives 
comprising of discrete commands: move-forward, turn-left, 
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turn-right, and stop. The robot operates within a navigation 
environment populated by both static and dynamic obstacles 
and aims to reach several goals positioned ubiquitously while 
striving to avoid collisions, monitor travel distance, and 
manage energy expenditure. 

The framework has been implemented on Gazebo-based 
simulations as well as on a TurtleBot3 platform for real-world 
testing. The environment state is defined as a feature vector of 
distances and heading angles to the nav-goals, which are 
provided to a Deep Q Network for action selection. Each 
episode ends in one of three states: success, failure, or time-
out. The carefully crafted reward function promotes safe, 
efficient, and goal-directed behaviour within the defined 
boundaries of the objectives. The system architecture 
comprises a DQN learner, target network for DQN 
stabilization, and experience replay buffer for decorrelating 
streams of experiences. 

The interface with the Bayesian optimization module which 
manages the learning dynamics and hyperparameter tuning is 
the focus of concern of system under consideration. The fusion 
of the learning behaviour system and the optimization system 
defines the essence, or rather the core, of the BO-DQN 
framework.  

 

B. Hyperparameter Search Space Definition 

Bayesian Optimization Search Space consists of seven 
hyperparameters identified to impact the efficiency of Deep Q-
Networks. These parameters comprise both continuous and 
discrete domains and include learning rate, discount factor, 
exploration rate, replay buffer size, batch size, target network 
update frequency, and network architecture. 

All parameters were provided with a range based on pre-
existing research literature and prior work. For example, the 
learning rate was changed logarithmically from 1e-5 to 1e-2 in 
order to capture both conservative and aggressive gradient step 
updating. The discount factor 𝛾 was shifted from 0.90 to 0.99 
to evaluate short-term vs long-term planning preferences. 
Exploration rate ε was permitted to vary from 0.1 to 1.0 to 
reflect policies that were highly exploratory as well as 
exploitative. The size of the replay buffer and the batch size 
control the sample diversity and training stability respectively, 
while the frequency of target updates smooths temporal 
changes in the Q-value targets. Finally, the network 
architecture was changed in depth (1-3 layers) and width (64-
512 units for each layer) to facilitate both easy and difficult 
navigation tasks. To highlight the hyperparameters that were 
optimized in this study, the final optimal search ranges 
identified through the BO process are provided in Table 3 
alongside the optimal values.  

 

Table 3: BO Search Space Ranges and Final Optimal Values 
for Each Parameter 

Hyperparameter Search Range Optimal Value 

(BO) 

Learning Rate 1e-5 to 1e-2 3e-4 

Discount Factor (γ) 0.90 to 0.99 0.95 

Exploration Rate (ε) 0.1 to 1.0 0.25 

Replay Buffer Size 10,000 to 1,000,000 500,000 

Batch Size 32 to 256 128 

Target Network Update 

Frequency 

100 to 10,000 1,000 

Network Architecture 1–3 layers, 64–512 

units 

2 layers, 256 units 

 

These ranges have been set to allow exploration in a wide 
space while restricting the domain to areas which have 
previously shown convergence probability in robotic DRL 
systems. This balance is important for the effectiveness of 
Bayesian Optimization, which is most efficient in bounded and 
relevant spaces defined to the task domain.  

 

C. Bayesian Optimization Strategy: Acquisition Function, 
Surrogate Model 

The optimization module of Bayesian is concentrated on the 
capability of building a surrogate model of the DQN’s 
objective performance profile and steering the search with 
uncertainty-based sampling. We selected a Gaussian Process 
(GP) model as the surrogate, given its adeptness in smooth 
function modelling, even with accompanying noise. The GP 
was given a modest set of initial random evaluations (5-10), 
which would be progressively improved with every batch of 
hyperparameter trials. 

The selected acquisition function is Upper Confidence 
Bound (UCB), which is defined as the mean prediction of the 
GP plus a scaled standard deviation. It allows balancing 
between exploiting regions with high perceived rewards and 
exploring low-confidence areas, where the model may lack 
reliable information. The acquisition parameter was annealed 
over time, gradually changing from exploration to exploitation 
as more evaluations were performed. Asynchronous batch BO 
enabled the parallel evaluation of multiple configurations. 

Each trial of the DQN training process was run for 200 
episodes. The cumulative reward averaged over the last 20 
episodes of each trial was used to update the GP, serving as the 
benchmarking reward. This metric smoothens the impact of 
random fluctuations associated with log stochastic variability 
from individual runs while providing meaningful evaluation of 
policy performance. The BO loop was set to a cap of 50 
iterations or when convergence was observed in cumulative 
reward, regardless of BO loop iterations performed. 

With each iteration of the optimization, the GP model 
enhanced the approximation of the reward landscape. This is 
apparent in Figure 3, where the convergence curves of DQNs 
trained with best-BO-found hyperparameters are contrasted 
against those trained using arbitrary configurations. The BO-
optimized model outperformed the rest in terms of cumulative 
reward and exhibited smoother learning patterns, 
demonstrating the advantages of data-efficient tuning on policy 
stability. 

 

Figure 3: Convergence Curve of Best vs Random 
Hyperparameter Sets 
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In order to visualize the reward received from different 
configurations within the search space, Figure 4 was created. 
It demonstrates the obtained reward from various 
configurations in the search space. Each coloured point marks 
a trial, plotted using learning rate and discount factor, while 
the colour indicates the cumulative reward. Clearly, there are 
certain regions of the space (e.g., low learning rate and 
moderate γ) that reward more over multiple trials which 
suggests the model’s tendency to prefer more stable 
conservative updates during value learning. 

 

 

Figure 4: Reward Distribution Over Hyperparameter 
Configurations 

 

This supports not only the accuracy of the optimization 
method, but also aids researchers and engineers to focus their 
hyperparameter tuning in efforts on more promising regions.  

 

D. DQN Implementation with Optimized Parameters 

After acquiring the optimal hyperparameter values using 
Bayesian optimization, it was decided to keep them and use 
them to train a final DQN model for downstream 
benchmarking. This model, denoted BO-DQN, had the same 
architectural framework that was previously described, but 
was fully parameterized with the optimal values provided. 

The discounting parameter with value 0.95 provided a 
balance between mediacy spontaneity and future orientation 
while a discounting learning rate of 3e-4 allowed for fast 
updates without destabilizing training. 0.25 exploration rate 
was set to enable sufficient exploration and reduce to 
exploitation as the policy improved. The batch size of 128 and 
replay buffer of 500,000 samples ensured adequate diversity 
and stability of gradients. Updating the target network every 
thousand steps ensured temporal smoothness and the 
architecture used two hidden layers of 256 units each, which 
had display strong performance in medium-complexity 
navigation tasks. 

The BO-DQN model was evaluated on both simulated and 
real-world tasks, as described in the next section, and the 
results are included. The constant overperformance of BO-
DQN against its non-optimized versions proves that it is not 
only an efficient hyper-parameter tuning method, it's also a 

practical means for successfully deploying deep reinforcement 
learning on real robotic tasks. 

  

IV. EXPERIMENTAL SETUP 

A. Robotic Simulation and Hardware Environments 

Research employing both high-fidelity simulation and real 
robotic systems was conducted to test the BO-DQN framework 
in different contexts. Procedure of Turtle Bot 3 simulation was 
done in ROS Gazebo where differential drive mobile robots 
work in 2D maps of escalating difficulty that are generated 
procedural. These environments apply LiDAR based 
perception, wheeled-encoder odometrical, and dynamic 
systems with injected noise to simulate the real-world tyranny 
of automation where robots are imperfect and unpredictable. 

The physical verification was done on the Turtle Bot 3 with 
Raspberry Pi 4 and OpenCR 360 degree lidar. The robot was 
teleoperated using ROS2, and all models were run on an edge 
computing node (Jetson Nano) mounted on the robot. The 
physical constraints of the platform served as a practical 
reference for evaluating the model’s effectiveness, inference 
time, and performance under conditions of noise from the 
sensors and delays from the actuators. 

Both types of robots executed distinct action navigation 
using four basic primitives: advance, stop, rotate right, and 
rotate left. Each episode began with a randomly placed goal 
and an unknown configuration of obstacles. The state of the 
agent was modelled with a 12 dimensional vector describing 
the position of the obstacle with respect to the robot's laser 
scanner working in a 180-degree range, the distance to the 
goal, and the robot’s angle. The reward function attached 
penalties for colliding with obstacles, rewards for making 
progress towards the goal, and provided additional bonuses for 
moving in a fluent manner. 

 

B. Navigation Tasks and Evaluation Metrics 

In order to guarantee thorough evaluation, four navigation 
cases with increasing levels of difficulty were developed. 
These tasks aimed to assess generalization, robustness, learning 
efficiency, and effectiveness within restrictive spatial and 
temporal boundaries. 

The first task, Simple Maze, consisted of guiding the agent 
through corridors where the layout was relatively 
straightforward and unobstructed in lieu of measuring the 
policy convergence rate. The second, Obstacle Course, 
consisted of sharp turns with static obstacles that needed 
precise pathing. The third, Dynamic Agents, added other active 
robots which caused partially stochastic obstruction structures. 
Finally, the fourth task, Cluttered Space, was a dense semi-
structured map where sensor noise and goal affording 
occlusion were high, aimed at understanding the model’s 
adaptability and memory abilities. 

As illustrated in Table 4, every activity was given a 
complexity score between 1-5 considering spatial variability, 
path unpredictability, and the degree of manoeuvring required. 
The evaluation metrics were chosen in accordance and for 
Simple Maze, completion time was used, Obstacle Course was 
evaluated based on the distance with collision-free paths, 
Dynamic Agents gauged the success rate of goals 
accomplished and Cluttered Space was evaluated on the 
smoothness and efficiency of the path taken. 
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Table 4: Task Descriptions, Complexity Scores, and Metrics Used 

n Description Complexity Score (1–5) Primary Evaluation Metric 

Simple Maze Basic corridor navigation with single goal 1 Completion Time 

Obstacle Course Static obstacles with narrow passages 3 Collision-Free Distance 

Dynamic Agents Moving obstacles and variable spawn points 4 Goal Success Rate 

Cluttered Space High-density layout with dead-ends and sensor noise 5 Path Smoothness 

 

The procedures were performed 50 times using different 
random seeds and the average result was taken for statistical 
validity. All the models were subjected to the same 
environmental seeds and initial conditions which enabled a 
fair comparison across different tuning strategies and 
architecture configurations. 

Figure 5 demonstrates the average completion times for 
each of the tasks which indicates the efficiency differences in 
navigation. As suspected, the more difficult environments had 
longer and more complicated paths which required finer 
control and deeper planning. Although BO-DQN was faster 
than most of the baseline models during the Cluttered Space 
task, it proved to be the most challenging due to local minima 
traps and sparse reward signals. 

 

 

Figure 5: Completion Time Across Navigation Tasks 

 

C. Baseline Configurations for Comparison 

In order to make accurate comparisons, these three baseline 
configurations were set: 

1. A standard DQN with default settings from previous 
work (e.g., learning rate = 1e-3, γ = 0.99, ε = 0.1). 

2. A grid search tuned DQN with hyperparameters chosen 
manually over a coarse search grid. 

3. A random search tuned DQN with parameters sampled 
uniformly within valid ranges.  

Each of these models trained with the same episodes, 
network structure, and reward functions. The critical 
distinction was in the method of hyperparameter optimization. 
For all models, 200 episodes per task were executed and the 
same metrics were used to assess them. 

The benefits of BO-DQN became evident when examining 
learning curves, path stability, and convergence rates. These 
parameters led to greater policy improvement and consistency 
over randomized starting conditions. In particular, BO-DQN 
showed superior performance to other methods in the 
Dynamic Agents task where the reward terrain constantly 

changed due to unpredictable moving obstacles. 

To evaluate navigation accuracy, the average path deviation 
of the robot from the optimal path across different training 
episodes is illustrated in Figure 6. The BO-DQN model 
consistently reduces path deviation while baseline models 
showed erratic deviation patterns and did not improve after 
some time. This indicates that there exists a more efficient 
convergence to effective policies under BO-optimized 
conditions, albeit with greater control. 

 

Graph 6: Robot Path Deviation vs Number of Episodes 

 

The reduced deviation from the expected path is significant 
for indoor delivery, warehouse navigation, and assistive robotic 
devices use cases where smooth motion is required due to 
narrow hallways and proximity to humans.  

 

D. Computational Resources and Software Stack 

All experiments were conducted in a hybrid setup comprised 
of workstation class servers and handheld devices with 
integrated components. Training experiments were run with an 
Intel i9 CPU, 64GB RAM, and an NVIDIA RTX 3090 GPU. 
Such a configuration allows rapid assessment of 
hyperparameter settings during Bayesian optimization. For 
deployment testing, policies were transformed to compact 
inference graphs and deployed onto jetson nano boards with 
TensorRT optimization. 

The software stack was developed with the tools of Python 
version 3.9, simulation done with OpenAI Gym, while 
PyTorch 2.0 along with BoTorch and GPyTorch libraries were 
used for Bayesian Optimization. ROS2 was implemented for 
message passing and controlling the robot, while visualization 
was done using RViz. Performance across different models and 
runs was tracked using Weights & Biases which allowed 
logging, model checkpointing, and evaluation metrics to be 
tracked consistently. 

For reproducibility purposes, all the code and environment 
details were encapsulated into a container using Docker. Fixed 
seeds were used to control randomization for tasks, and the 
sensor noise models were adjusted to represent realistic lidar 



Journal of Intelligent Systems with Applications 2023; 6(1): 1-12 8 
 

jitter and range error. 

The practicality of BO-DQN was tested rigorously 
confirming its effectiveness. It also showcased the 
effectiveness hyperparameter optimization on systems that 
require tuning to learn, making the process reliable and 
efficient.  

 

V. RESULTS AND PERFORMANCE EVALUATION 

A. Navigation Accuracy and Task Completion Time 

To evaluate the effective control of BO-DQN, the average 
task completion time and navigational accuracy of the agent 
were measured for all four environments. These parameters 
serve as primary measures in any robotic navigation 
benchmark; accuracy refers to the agents ability to achieve 
targets with minimal collisions, while task completion time 
represents the efficiency of the path taken as well as the time it 
takes to make decisions. 

BO-DQN had the highest average navigation accuracy with 
a task success rate of over 92% for all environments. In 
contrast, both the grid-tuned and randomly tuned models only 
achieved 85% and 78% success rates, respectively. The 
Cluttered Space scenario had the most pronounced accuracy 
gap with BO-DQN achieving 88% success compared to the 
random baseline of 68%, demonstrating the model’s strength 
in difficult environments with sparse rewards and many dead-
ends. 

As illustrated above, the completion time analysis showed 
that BO-DQN accomplished the objective in 10-20% fewer 
steps compared to the other models. This is due to better 
policy generalization coupled with optimal action selection as 
a result of the tuned hyperparameters. The BODQN agent had 
a better ability to take advantage of temporal dependencies, 
resulting in smoother and more direct paths being generated.  

 

B. Episode-Wise Reward and Convergence Analysis 

The speed and reliability with which a model converges to a 
stable, high-reward policy indicates the quality of learning. To 
assess this, we calculated the smoothed episode-wise 
cumulative rewards for BO-DQN, grid search DQN, and 
random search DQN over 200 episodes and plotted the results, 
which are presented in Figure 7. 

As already mentioned, BO-DQN has faster convergence and 
smoother reward progression. Starting from near zero 
cumulative reward, BO-DQN surpassed the reward mark of 
200 by episode 90, whereas the grid search model only 
reached this mark after 140 episodes. The random search 
configuration could hardly surpass 160 reward points even by 
episode 200, with larger reward volatility caused by 
hyperparameter mismatches. 

 

Figure 7: Smoothed Reward Over Episodes (BO vs Grid vs 
Random) 

 

Efficient hyperparameter tuning is yet again demonstrated in 
these reward smoothing graphs. BO-DQN’s acquisition-driven 
hyperparameter search helps in finding strongly performing 
parameter regions quickly, preventing the use of naively 
searched samples. This reallocation of resources leads to 
efficacious management of episode budgets, an important 
factor in robotics as each episode can represent hours of actual 
time.  

 

C. Computational Efficiency and Sample Usage 

Further surpassing the accuracy and reward, robotic learning 
systems must attend to their efficiency. In this study, we 
focused on sample usage by analysing the number of episodes 
needed for convergence in each environment. We defined 
convergence as the state in which average reward, over a fixed 
period of time, remained within 5% of its maximum for 20 
subsequent episodes. 

As presented in FIgure 8, BO-DQN had a faster convergence 
rate than other tuning methods, such as grid and random 
tuning. For the Simple Maze, BO-DQN was able to converge 
within 50 episodes, but the random search model needed 
almost double the attempts. For the Cluttered Space model, 
which is more advanced, BO-DQN was able to reach 
convergence in 100 episodes while grid search slowed to 140 
and random search further stagnated at 170 episodes. 

 

 

Figure 8: Episode Count to Convergence in Different 
Environments 

 

This speed increase is due the BO surrogate model’s ability 
to focus on high-utility areas in the hyperparameter space 
instead of randomly probing. These results are extremely 
beneficial for resource limited robotics systems where 
lessening the training iterations leads to reduced battery 
consumption, reduced wear cycles, and improved deployment 
feasibility. 

Moreover, BO-DQN experienced lower wall-clock training 
time per policy. The replay buffer utilization and 
hyperparameter settings that resulted in faster gradient 
convergence increased efficiency over the policy. The model 
also confirmed it’s real-time deployment suitability when it’s 
inference latency remained below 40ms on embedded devices. 

 

D. Generalization Across Environments 

The primary objective of robotic learning is generalization, 
that is, being able to transfer a trained policy across different 
environments, sensors, and operational conditions. In 
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attempting to evaluate this, we placed trained models in new 
environments with completely different layouts, goal 
locations, and simulated sensor noise. Each model was given 
100 new configurations without any further training. 

Under these novel conditions, BO-DQN achieved 89% of 
its original performance. In contrast, grid and random models 
only managed 78% and 65%, respectively, which suggests 
they are overfitting and unstable to variation. This result 
illustrates the importance of hyperparameter optimization, 
which not only improves in-domain performance but also 
increases model robustness to domain shift. 

To explore this further, we additive noise to the sensor 
readings from the model during inference. This noise is zero-
mean Gaussian with increasing standard deviation. Figure 9 
illustrates the policy success rate versus the level of noise 
injected. 

 

 

Figure 9: Policy Robustness Against Sensor Noise 

 

As noted, BO-DQN performed at a success rate of over 
85% up to a noise standard deviation of 0.3. Other models, 
conversely, performed worse, failing below 70% at the same 
threshold. This robustness could stem from BO being able to 
find hyperparameter settings that facilitate smoother Q-
function approximations along with more favourable error 
margins in policy decisions. 

Unified, these results validate the assumption that Bayesian 
Optimization facilitates faster policy convergence and 
improves efficiency as well as increases the world’s real life 
effectiveness which is highly needed by robotic systems 
working on navigating through noisy, uncertain and variable 
environments. 

  

VI. DISCUSSION 

A. Interpretability of Hyperparameter Influence 

One powerful motivation for BOS for hyperparameter 
optimization was performance improvement but emphasis was 
placed to deep dive using learning behaviour. Probabilistic 
modelling of BO provides a posterior over the performance 
surface enabling thorough sensitivity analysis detailing how 
each hyperparameter affects the final output policy quality. In 
the present work, we assessed this analysis using the variation 
in average cumulative reward due to individual 
hyperparameter changes while other hyperparameters were set 
fixed. The results of this analysis are shown in Figure 10. 

The analysis uncovered that the learning rate has the 
greatest normalized effect on the final policy performance at 
0.35, which is in line with literature because learning rate 

determines how finely the Q-network gets updated, and 
incorrect learning values lead to instability or learning that is 
overly conservative. Both exploration rate and network 
architecture depth were also among the top parameters, scoring 
0.28 and 0.30, respectively. This indicates that the ability of the 
agent to explore as well as the scope of the neural function 
approximator are essential in the development of robust 
navigation policies. 

 

 

Figure 10: Sensitivity Analysis of Each Hyperparameter on 
Final Score 

 

On the lower end, batch size and target update frequency 
parameters had lower contributions (0.12 and 0.15); 
nonetheless, they are still important for maintaining gradient 
stability and learning synchronization. It was surprising to see 
the discount factor have moderate influence, supporting the 
idea that in the context of DQNs for navigation, effective 
temporal credit assignment is necessary but not all-important. 

The aspect of the BO system under consideration results in a 
useful extra benefit other than optimizing performance. In 
contrast, it allows roboticists and engineers to effectively 
change model parameters with respect to specific hardware or 
mission limitations. One can focus on optimizing the most 
important hyperparameters instead of starting the tuning 
process from the ground up, thus greatly minimizing the search 
effort while achieving excellent outcomes. 

 

B. Trade-Offs in Computation vs Performance 

Incorporating Bayesian Optimizations comes with upfront 
costs as time and resources must be spent on identifying the 
performance landscape through a Gaussian Process or other 
surrogates. This includes model fitting, acquisition function 
evaluation, and multiple policy training runs to exercise the 
search space. Nevertheless, this overhead is paid off with time 
through quicker convergence in policy training and more 
sample efficient exploration. 

Our analyses reveal that even though BO spent an additional 
20-30% on time with the preliminary tuning passes compared 
to random search, the policies as a result gave far fewer 
episodes to achieve convergence. Additionally, BO-DQN 
agents proved to be more efficient in the execution of tasks 
with faster completion times and more fluent paths, resulting in 
reduced cumulative training time and energy expense 
throughout the entire deployment pipeline. 

Another trade-off is between the surrogate model's 
complexity and performance. While GP's uncertainty estimates 
are strong, they are not suitable for scalability with large 
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amounts of observations. To mitigate this, we constrained the 
number of BO iterations to 50 and looked at batch evaluation 
with asynchronous UCB. Future work may include scaling 
approaches like Tree-structured Parzen Estimators and 
Bayesian Neural Networks which eliminate the need for 
computational bottleneck while maintaining the beneficial 
sides of probabilistic modelling. 

Considering BO's profit estimates alone, the trade against its 
computational expense seems positive, particularly where 
training data is costly, and each episode poses a risk to either 
the hardware or incurs physical wear. To elaborate, the 
agreement cost is stringent, meaning the sum of all possible 
policies that may be learned is less than the cost of efficient 
hyperparameter tuning BO's profit estimates alone. 

 

C. Real-World Deployment Challenges 

Sim and physical platform performance benchmarks display 
the ease of efficiency in the BO- DQN architecture. It faces 
new challenges when transferring to real world scenarios. The 
first problem is the gap in the domain of the training 
environment and the actual operational environment. There are 
many ways in which door friction, lighting, actuator lag, or 
sensor calibration can affect state change which are not 
captured in the training stage and can be implemented into 
training. While noise injection and randomization were 
executed as field tests onto the BO-DQN, one-off deployments 
will have to rely on more rigorous guarantees of robustness 
from some sort of meta learning or online adaptation. 

A certain level of concern needs to be raised because of 
how tight computational resources are on edge devices. Even 
though BO allows the tuning to be targeted to inference 
productivity, the tuning process itself needs a server grade 
computer. Assuming full embedded pipes, it would be 
necessary to tune in simulation and load the egged onto target 
platform, which prompts the issues of transferability and cross 
domain generalization our model results do not answer 
completely, but do address. 

Tracking and safeguarding are essential for executing BO-
DQN. In the case of physical robots, unpredicted policy 
execution might result in robots colliding into objects or 
getting damaged. Some of these risks can be lessened with 
human-in-the-loop supervision, model uncertainty estimation, 
and rule-based fail-safes. As with most things in life, there is 
no universal solution to transferring hyperparameters from one 
task to a more complex and related task out there. A potential 
candidate could be hierarchical BO or multi-task surrogate 
models where shared priors are learned across navigation 
domains. 

Despite any possible drawbacks, it can be said with 
confidence that BO-DQN brings us closer to automating the 
learning process of robots. Self-optimizing systems increase 
robotics’ efficiency, reduce the workload of system 
integrators, standardize multiple deployments, and have the 
capability to adapt based on the feedback from the 
environment; all of which are required when trying to scale 
intelligent agents in the real world. 

 

D. Comparison with Other Reinforcement Learning 
Strategies 

As with other robotic control systems, deep Q-learning is 
one of a vast array of algorithms used for reinforcement 
learning. Alternatives to policy optimization that focus on 
continuous action spaces include DDPG and PPO, which are 

examples of actor-critic methods that directly optimize policy 
gradients. Such algorithms have also proven more effective 
than DQNs in certain situations, but there are also new 
hyperparameter problems that stem from them. These include 
critic and actor learning rates, entropy coefficients, and 
clipping thresholds. 

In comparative analyses, DQNs are typically more stable for 
discrete action space problems and do not need as much on-
policy interaction, making them advantageous for cases where 
real-time feedback is limited. Additionally, their dependence 
on replay buffers permits caches and generalization for 
improved performance. BO-DQN captures these features while 
reducing DQN tuning sensitivity with structured optimization, 
resulting in performance equal to or better than PPO in sparse 
reward scenarios. 

Also, as an optimization layer, BO is behavioural agnostic. 
Any surrogate-based search could be used for PPO, DDPG, 
Soft Actor-Critic (SAC), or any type of amalgamated model-
based RL frameworks. Follow-up research may apply our BO 
framework in these areas and study if the advantages of 
sample-efficient tuning are maintained across different learning 
paradigms. 

Another comparison point is with AutoRL frameworks that 
leverage either evolutionary strategies or reinforcement 
learning to adjust the learning pipeline. While all these 
methods provide full pipeline automation, they are very 
compute intensive and suffer from the absence of uncertainty 
modelling and interpretability that BO provides. Hence, BO 
performs best in terms of sample efficiency and provides the 
required analytical transparency when deployed in real-world 
situations, making it most suitable for robotics applications 
where cost, risk, and interpretability are a concern. The 
summary indicates that the BO-DQN method captures value in 
deep learning, particularly in reinforcement learning. It 
integrates mature Q-Learning with Bayesian Optimization and 
offers complete sample efficiency and interpretability in 
robotic navigation tasks. 

  

VII. CONCLUSION AND FUTURE WORK 

A. Summary of Findings 

The presented work describes a new principle-driven and 
performance-focused strategy based on the use of Bayesian 
Optimization (BO) to automate hyperparameter tuning in Deep 
Q-Learning Networks (DQNs), especially for real-time robotic 
navigation systems. With the development of the BO-DQN 
framework, we showed that aggressive data-efficient 
hyperparameter tuning does not only make learning more 
efficient but yields better navigation policies in simulations and 
real robot environments. The simulations as well as real robotic 
navigation systems validated the benefits of BO for 
hyperparameter tuning as opposed to traditional grid and 
random search methods. BO-DQN was shown to achieve faster 
convergence, higher cumulative rewards, and more robust 
policies out of all the different environments, including the 
more complex obstacle and dynamical environments. The 
tuned models demonstrated greater task performance after 
fewer episodes, leading to sample efficiency and real-world 
relevance. 

Our sensitivity analysis reaffirmed that the hyperparameters 
of learning rate, exploration rate, and network architecture 
have deep impact on model performance and Bayesian 
techniques are more efficient at locating optimal regions in 
these parameter spaces than blind or exhaustive searches. The 
focus on probabilistic modelling not only enabled better tuning 
but also understanding the drivers of performance in DQNs for 
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navigation tasks. 

 

B. Implications for Robotic Learning Automation 

The consequences of this research are oriented towards the 
automation and deployment of robotic learning, which is 
sophisticated in its implications. In practical robotics 
applications, where prototyping comes at a high cost and 
reckless actions can result in damage to the hardware, making 
the most effective use of the learning pipeline becomes the 
most challenging constraint. Discriminative BO-DQN solves 
this problem because it allows robots to improve their 
behaviours more quickly with fewer samples, and even more 
importantly, with very restrictive available compute power. 

Our results lead us to advocate for the combined use of 
Deep Q-Learning and BO for mobile robot platforms, 
particularly where both discrete decision making and reactive 
planning are required. This encourages autonomous robotic 
systems to change their learning process without manual 
tuning which minimizes the need for expert help. In addition, 
the integration and posterior uncertainty estimates in addition 
to acquisition functions makes the process transparent and 
trustable when deploying learning agents in sensitive 
environments. 

With the increase in utilization of robots for tasks like 
warehouse logistics, surveillance, healthcare robotics, and 
delivery, there is a need to automate the learning process as 
well. Minimally Adaptive Open-Ended BO-DQN (BO-DQN) 
provides a modular framework that is easy to extend and 
deploy; it can be integrated into robotic pipelines with little 
changes to the overall architecture and control flow. Its 
versatility to many different hardware setups, environments, 
and tasks makes it a valuable system’s infrastructure for 
supporting scalable autonomous learning. 

 

C. Future Work: Multi-Agent Navigation, Real-Time BO 
Integration 

This work was cantered around single-agent navigation with 
a static BO in offline training, however, there are a number of 
exciting possibilities for further investigations. There is one 
extension which appears to be straightforward which is 
extending the BO-DQN framework to include multi-agent 
navigation. In these situations, agents will often need to work 
together or compete in the same environment, which adds 
another layer of difficulty for policy optimization. Multi-agent 
reinforcement learning (MARL) environments typically have 
training instability because of the non-stationary behaviour of 
other agents. The use of BO might help hyperparameter tuning 
across cooperative and adversarial scenarios and allow for 
more effective scalable policy learning in swarm robotics or 
autonomous fleet control. 

Integrating real-time Bayesian Optimization into the 
training loop is another key focus area. Existing BO 
techniques are almost exclusively batch and offline, but real-
time BO would mean hyperparameters could be altered during 
system deployment. That would permit robotic systems to deal 
with drift in dynamics, changes in the environment, or shifting 
task goals without incurring full retraining overhead. Current 
developments in streaming Bayesian Optimization as well as 
contextual bandit learning may provide a relevant solution. 

Also, I examine future designs where BO is blended with 
other optimization methods like BO with gradient-based or 
evolutionary search to harness other features of the 
performance landscape. The possibility of using transferable 

hyperparameter priors for related tasks, environments or even 
types of hardware will be studied which may facilitate efficient 
policy porting in modular robotic systems. 

In a systems view, constraints in real-life such as energy 
consumption, thermal limits, and smoothing of actuation also 
have to be considered and optimized in an objective function of 
BO. This turns the imperfect system into a multi-objective 
optimization problem which looks for a trade-off between 
learning quality, longevity, and safety of the system – which 
brings the system one step closer toward autonomous and 
intelligent robotic systems. 

The work demonstrates the importance of BO in learning 
robotics for the new era by deep learning termed as BO-DQN 
that integrates a methodical approach to addressing 
reinforcement learning. In the case where learning is achieved 
by robots, complex and dynamic environments can be mapped 
and understood within a short span of time. Further 
modifications to the proposed system will render it a self-
sufficient learning system, which would expedite the adoption 
of robotic systems in various sectors. 
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