Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

Bayesian Optimization of Hyperparameters in Deep Q-
Learning Networks for Real-Time Robotic Navigation
Tasks
Ger¢cek Zamanli Robotik Navigasyon Gorevleri 1¢in
Derin Q-Ogrenme Aglarinda Hiperparametrelerin
Bayes Optimizasyonu
Srikanth Reddy Keshireddy

Senior Software Engineer, Keen Info Tek Inc., United States
Email: sreek.278@gmail.com

Abstract—Navigating autonomously is a crucial capability for
modern robots, as navigating in unknown and constantly altering
environments is not an easy task. A powerful reinforcement
learning method known as Deep Q-Learning (DQL) has recently
been introduced for decision-making in robotic navigation;
nevertheless, it is known to deliver subpar results due to its
overreliance on hyperparameters, including learning rate,
discount factor, exploration strategy, and even network
architecture. This paper deals with the issue of hyperparameter
optimization tuning via Bayesian Optimization (BO) on a DQN
(Deep Q Network) focusing on real-time navigation tasks
attempting to enhance convergence speed, sample efficiency, and
generalization. We present a new BO-DQN framework, which
uses \textit{Gaussian process} surrogate models with the UCB
acquisition function, which allows for better refinement during
later iterations of DQN training. An array of simulations and
real-world robotic environments were tested, with results
indicating that the BO-tuned models... outperform both grid and
random search baselines with a greater rate of convergence,
increased stability, and improved accuracy on the tasks.
Furthermore, the proposed method performed remarkably well
when exposed to noisy sensors and changing task complexities.
This work offers a practical approach to deploying DQN policies
on mobile robots working in uncertain conditions due to its low
sample requirement and its real-time responses.

Keywords—Deep Q-Learning, Bayesian Optimization, Robotic
Navigation, Hyperparameter Tuning.

Ozetce—Otonom olarak gezinmek, bilinmeyen ve siirekli
degisen ortamlarda gezinmek kolay bir is olmadigindan, modern
robotlar icin hayati bir yetenektir. Derin Q-Ogrenme (DQL)
olarak bilinen giiclii bir takviyeli 6grenme yoéntemi, robotik
gezinmede karar alma icin yakin zamanda tamtildi; ancak,
o6grenme orani, iskonto faktorii, Kesif stratejisi ve hatta ag
mimarisi gibi hiperparametrelere asir1 giivenmesi nedeniyle vasat
sonuclar verdigi bilinmektedir. Bu makale, yakinsama hizini,
ornek verimliligini ve genellemeyi artirmaya cahsan gercek
zamanh gezinme gorevlerine odaklanan bir DQN (Derin Q Agr)
Uzerinde Bayes Optimizasyonu (BO) yoluyla hiperparametre
optimizasyonu ayarlama sorununu ele almaktadir. UCB edinme
isleviyle \textit{Gaussian sureci} vekil modellerini kullanan ve
DQN egitiminin sonraki yinelemeleri sirasinda daha iyi iyilestirme
saglayan yeni bir BO-DQN cercevesi sunuyoruz. Bir dizi
simiilasyon ve gercek diinya robotik ortami test edildi ve sonuclar
BO ayarhi modellerin... hem 1zgara hem de rastgele arama temel
cizgilerini daha yiiksek bir yakinsama orami, artan kararhhk ve
gorevlerde iyilestirilmis dogrulukla geride biraktigim gosterdi.
Dahasi, onerilen yontem giiriiltiilii sensorlere ve degisen gorev
karmasikliklarina maruz kaldiginda dikkate deger bir performans
gosterdi. Bu calisma, diisiik 6rnek gereksinimi ve gercek zamanh
yanitlar1 nedeniyle belirsiz kosullarda c¢alisan mobil robotlarda
DQN politikalarimiin dagitimma yénelik pratik bir yaklasim
sunmaktadir.

Anahtar Kelimeler—Derin Q-Ogrenme, Bayes Optimizasyonu,
Robotik Navigasyon, Hiperparametre Ayari.

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

I. INTRODUCTION

A. The Rise of Deep Reinforcement Learning in Autonomous
Robotics

Deep learning and reinforcement learning are now
embedded in the algorithms driving intelligent robots that are
widely available to the public. The field of Al is advancing at
an exponential rate, making once complex tasks doable within
an incredibly short timeframe [1]. The frame of reference has
shifted towards more complex applications, from automating
guided vehicles to building intelligent agents that dynamically
make decisions in real time within unpredictable, open-ended
operational settings [2].

The Triadic Framework illustrated in Figure 1 displays key
steps in realizing intelligent robotic systems where
incorporating deep learning alongside neural networks
methods have driven the steepest advancements. The ability of
sensors, such as LIDAR cameras, to provide considerable
amounts of information, coupled with high-performance
processors, allows for the implementation of advanced Q-
learning strategies [3]. As a result, robots are now capable of
autonomously learning to navigate in unfamiliar environments
devoid of predefined maps [4].

Regardless, there are still some weaknesses. The
performance of DQNs is still very sensitive to the
hyperparameters that control learning behaviour. Adjusting
parameters poorly can lead to convergence taking too long,
becoming unstable, or completely failing to learn [5]. These
issues are common in real-time robotics, for example, where
training data is expensive to acquire, there are safety

2

restrictions on exploration, and computational resources are
limited.

B. Challenges of Hyperparameter Tuning in Q-Learning-
Based Navigation

Interactions with the environment generate data in
reinforcement learning are non-11D and come with rewards that
are delayed. Unlike with supervised learning models, the lack
of independence means the data will lack a certain level of
homogeneity. This makes shifting the hyperparameters of
DQNs not just computationally expensive, but complex,
requiring nonlinear model predictive control of the learning
dynamics during model deployment [6]. Learning parameters
like the learning rate or discount factor, exploration to replay
buffer ratio, and batch size have a profound effect on the
efficiency, stability, and optimality of the resulting policy [7].

For instance, an excessively high learning rate can make the
Q-network diverge, while an extremely low value would slow
down the rate of convergence. Equally, the discount factor
determines the agent’s bias towards immediate or long-term
rewards and incorrect values may lead to inefficient plans. The
exploration-exploitation trade off controlled by epsilon (g) in -
greedy policies influences the extent to which the agent
samples the environment, while the deep network’s architecture
determines its generalization and capacity [8]. In support of
these arguments, we provide Table 1. This table includes the
most utilized hyperparameters within Deep Q-Networks, their
corresponding ranges, and the qualitative impact on
performance.

Table 1: Common Hyperparameters in Deep Q-Networks and Their Impact on Performance

Hyperparameter Typical Range Impact on Performance
Learning Rate le-5to le-2 Controls convergence speed; too high causes divergence
Discount Factor (y) 0.90 t0 0.99 Affects long-term vs short-term reward weighting
Exploration Rate (g) 0.1t01.0 Balances exploration vs exploitation; critical for early learning
Replay Buffer Size 10,000 to 1,000,000 Larger buffers improve stability but increase memory cost
Batch Size 32 to 256 Impacts gradient stability and convergence noise

Target Network Update Frequency 100 to 10,000 steps

Stabilizes learning; low frequency may slow convergence

Network Architecture (Layers/Units) | 1-3 layers, 64-512 units

Deeper/wider networks increase capacity but risk overfitting

This table serves to demonstrate the statement in the case of
robotic systems that, tuning each component to achieve
optimal results requires grappling with a multifaceted
interplay of parameters as well as the optimization's intricate
design space. In addition, associating every single parameter
with a distinct value reveals the extensive freedom available.
Using manual tuning or a brute-force grid search becomes not
only inefficient from a computational resource perspective, but
time-consuming as well. As complexity and non-linearity in
robotic environments increases, so does the need for real-time,
sample-efficient learning paradigms, elevating the importance
of systematic hyperparameter optimization.

C. Bayesian Optimization as a Solution to Sample-Efficient
Learning

Bayesian Optimization (BO) is one of the most effective
methods for automatic hyperparameter optimization. BO is

useful in scenarios where there is both high expense and noise
associated with function evaluations [9]. Unlike grid or random
search methods, BO employs a probabilistic surrogate model,
most frequently a Gaussian Process (GP) as well as acquisition
functions that assist in choosing the next evaluation point.
These features allow it to balance the exploration of uncertain
areas and the exploitation of the more promising, richer regions
within the search space [10].

When considering the application of Bayesian Optimization
within the context of DQNs for robotic navigation, there are
multiple advantages. It is sample-efficient, which is crucial
when data is expensive to gather from running episodes in
simulated or real environments. Its robust framework aware of
uncertainty is also beneficial as it is tolerant to noise in
feedback, non-convexity, and other things common during RL
learning curve processes [11]. Lastly, BO provides
interpretability due to the posterior distributions placed over
the objective landscape which offers vital information about
hyperparameter sensitivity, interdependencies, and more.

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

The application of BO to DQN hyperparameter tuning poses
unique challenges such as defining informative priors, dealing
with mixed discrete-continuous spaces, and parallelizing
evaluations. Nevertheless, it enables the creation of automated
learning pipelines where the honed policies are self-adjusting,
requiring less human interaction and faster deployment in
practical robotics scenarios.

D. Research Objectives and Novel Contributions

This study presents an optimized application of Bayesian
Optimization to Deep Q-Learning within the context of robotic
navigation, positing that BO’s methods will notably increase

training efficiency, convergence consistency, and
generalization capability compared to conventional
approaches.

The key contributions of this work are as follows:

* We demonstrate the first implementation of a real-time
robotic navigation task using a complete supervisory
control BO-DQN design that assimilates GP modelling
with UCB acquisition and deep Q-network (DQN)
training.

* We empirically evaluate BO’s performance against grid
search and random search over a set of simulated
environments with varying task complexities in terms of
accuracy, convergence time, policy robustness, and
overall efficiency.

» We established for the first time evaluation criteria and
space for guided reward functions that consider real-
world challenges like obstacle avoidance, path
optimization, and optimal quantifiable latency.

» We analyse and report the individual and collective
influences of task noise, hyperparameter variation, and
environmental perturbations on system trajectories
through comprehensive hyperparameter framework
design.

« We outline the operational state of systems using latency
benchmarks on parameter samples, adaptation, and
inference under different robot platforms and sensors
providing for multiconfiguration system dynamics.

In particular, this paper aims to improve the autonomous
learning within robotics by guiding the readers through the
steps to implement Bayesian Optimization for probabilistic,
data-conservative hyperparameter tuning to show how much
value it provides in real-time and dynamic systems with
constraints.

Il. BACKGROUND AND RELATED WORK
A. Overview of Deep Q-Learning for Navigation

Deep Q-Learning Networks (DQNSs) have rapidly emerged
as a primary structure in autonomous robotic navigation
because DQNs enable agents to learn optimal policies in
highly complex and continuous environments. DQNs permit
an agent to evaluate the expected cumulative reward for
performing an action and follow a particular set of policies by
estimating the Q-function [12]. Unlike traditional control-
based approaches, DQNs allow for policy generation from
exteroceptive and sensory data such as images, lidar point
clouds, and even proprioceptive data, thus removing the need
for expert-crafted features or heuristics through manual
engineering [13].

3

In robotic navigation, DQNs are frequently applied to
problems involving sequential decision making under
uncertainty such as obstacle avoidance, goal seeking, corridor
following, and map-less exploration [14]. The architecture of
the algorithm includes components that facilitate experience
replay, target network freezing, and value bootstrapping, all of
which aid in the smooth training over long episodes in partially
observable environments. However, despite the remarkable
performance demonstrated by DQNs in benchmarked
simulated platforms, their true success in the real world is
highly dependent on the proper selection and adjustment of
hyperparameter settings [15].

B. Role of Hyperparameters in Q-Learning Stability

The configuration of hyperparameters directly influences the
execution and the stability of DQNs. The values of parameters
like the learning rate, discount factor, exploration rate, batch
size, and frequency of updates dominantly determine how an
agent learns. If these parameters are tactically misconfigured, it
may lead to extreme outcomes such as uncontrolled changes in
the estimated rewards, undue oscillations in the set policies, or
over-specialization due to early convergence.

The narrow range of available training data, the potential for
physical collisions, and tight resource limits makes
hyperparameter sensitivity especially important in robotics
[16]. As for navigation tasks, an agent can get trapped in an
exploration setting where it has access to many clutter free
regions but it does not safely perceive many needed passages.
Additionally, an unsuited discount factor can lead to short-
sighted decisions instead of encouraging behaviour more
aligned to reaching global goals. Choices in network
architecture, for instance, depth and width, also determine how
well the model generalizes across state transitions [17].

To demonstrate the impact of hyperparameter choices on
training dynamics, Figure 1 shows the average reward per
episode for models that were trained with ‘tuned’ (fixed)
hyperparameters versus those trained with randomly sampled
hyperparameters. The smoother and more stable ‘convergence’
presented in the episode number results for the model trained
with fixed hyperparameters indicates that smoother
convergence tends to be more stable, while the random results
exhibit a much more random configuration. These findings
support the need for systematic optimization frameworks
design aimed at ensuring effective learning processes.

250}~ Fixed Hyperparameters
=== Random Hyperparameters

— o
G =1
= =

—
1=}
=

Average Reward

30

0 % 50 75 W 15 B0 U5
Episode

Figure 1: Training Stability with Fixed vs Random
Hyperparameters

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12
C. Bayesian Optimization in Machine Learning Contexts

Bayesian Optimization has become one of the most popular
methods for hyperparameter searching due to its effectiveness
in machine learning models with expensive or noisy objective
function evaluations. BO approaches the optimization problem
in a Bayesian way, creating a surrogate model, often a
Gaussian Process GP over the objective function, optimizes it
using acquisition functions like Expected Improvement El and
Upper Confidence Bound UCB, which measure the confidence
level of possible solutions and reward.

In the scope of reinforcement learning, BO has been applied
to policy tuning, reward shaping, and neural architecture
search [18]. Its high sample efficiency is preferable in robotics
configurations, where each trial translates to a resource and
time-demanding episode. In addition, BO's mixed parameter
space treatment, noise, and uncertainty quantification make it
superior to random or exhaustive search strategies [19].

The application of BO in DQNs has not been researched in
detail, particularly with regards to real-time robotic
navigation. The objective of this research is to fill this gap by
investigating BO's impact on DQN performance with varying
task environments, model architectures, and deployment
scenarios.

D. Comparison with Grid Search and Random Search
Approaches

Most approaches to hyperparameter tuning in DQNs have
historically relied on grid search or random search. Grid
search attempts to determine the parameter value that offers
the best performance within a specified range. It is
straightforward to implement, but becomes computationally
intractable very quickly when the hyperparameter space
increases in dimension. It also fails to exploit the full
scalability of the model because it often misses the optimal
configuration because of its low resolution.

Random search offers more efficient results by selecting a
sample from a specified set of parameters for examination.
Although it does find useful configurations faster than grid
search, it does not use a mechanism to remember useful
strategies from previously explored search regions, nor does it

4

have an adaptive strategy that can shift focus to more
promising regions within the search space. In contrast,
Bayesian Optimization performs the opposite; it refines its
search pattern through previously observed outcomes, offering
a search path that is more likely to reach the endpoint faster
and with fewer attempts.

Figure 2 illustrates these results by plotting the optimization
method’s success rate on a variety of navigation tasks, which
clearly depicts the differences in effectiveness for each
algorithm. BO had the best average success rate, achieving
83% with grid search and random search achieving 68% and
61% respectively. These results demonstrate the efficiency of
BO for improving performance in DQNS.

80

Success Rate (%)
o £ w o -~
=] = =] 1= =]

r~
=

—
=3

Grid Search Random Search Bayesian Optimization

Figure 2: Success Rates of Various Optimization Methods
Across Benchmarks

For a more comprehensive overview of the research
framework, Table 2 provides a comparative overview of the
most recent studies which have incorporated deep
reinforcement learning to navigate a robot’s movement. It
includes the algorithms employed alongside the derived
optimizations as well as the main benchmarks of interest.
Earlier works in the table have continued to use some form of
manual or exhaustive tuning techniques, but recent attempts
like Jeng & Chiang (2023) have started utilizing Bayesian
optimization, specifically targeting policy stabilization and
convergence acceleration.

Table 2: Summary of Related Studies in Robotic Navigation with DRL

Study Method Used

Optimization Strategy Performance Focus

Yu et al. (2023) [20] DQN with manual tuning

Heuristic exploration Obstacle avoidance

Katsumi et al. (2021) [21] DDPG with grid search

Exhaustive parameter grid Energy efficiency

Chen et al. (2021) [22]

PPO with domain randomization

Task-agnostic noise injection | Terrain generalization

Jeng & Chiang (2023) [23] TD3 with Bayesian tuning

Bayesian surrogate modelling | Convergence speed

This review shows that while BO in reinforcement learning
is becoming more popular, its application in deep Q-learning
for navigation remains underdeveloped. Furthermore, most of
the available works do not seem to comprehensively study the
configuration of the hyperparameters or the practical
deployment scenarios. This gap is what we aim to address,
through robust analysis of BO algorithms in robotic navigation
both in simulation environments and physical hardware.

I1. PROPOSED FRAMEWORK: BO-DQN ARCHITECTURE
A. System Architecture of the Robot and Environment

The BO-DQN architecture proposed in this paper is cantered
on a modular robotic learning stack for continuous navigation
in real-time and autonomous discovery of unknown
environments. The system consists of a mobile robot
(simulated or physical) equipped with range sensors such as
lidar or ultrasonic, localization systems like odometry or
SLAM, and a finite Action Space for Motion Primitives
comprising of discrete commands: move-forward, turn-left,

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

turn-right, and stop. The robot operates within a navigation
environment populated by both static and dynamic obstacles
and aims to reach several goals positioned ubiquitously while
striving to avoid collisions, monitor travel distance, and
manage energy expenditure.

The framework has been implemented on Gazebo-based
simulations as well as on a TurtleBot3 platform for real-world
testing. The environment state is defined as a feature vector of
distances and heading angles to the nav-goals, which are
provided to a Deep Q Network for action selection. Each
episode ends in one of three states: success, failure, or time-
out. The carefully crafted reward function promotes safe,
efficient, and goal-directed behaviour within the defined
boundaries of the objectives. The system architecture
comprises a DQN learner, target network for DQN
stabilization, and experience replay buffer for decorrelating
streams of experiences.

The interface with the Bayesian optimization module which
manages the learning dynamics and hyperparameter tuning is
the focus of concern of system under consideration. The fusion
of the learning behaviour system and the optimization system
defines the essence, or rather the core, of the BO-DQN
framework.

B. Hyperparameter Search Space Definition

Bayesian Optimization Search Space consists of seven
hyperparameters identified to impact the efficiency of Deep Q-
Networks. These parameters comprise both continuous and
discrete domains and include learning rate, discount factor,
exploration rate, replay buffer size, batch size, target network
update frequency, and network architecture.

All parameters were provided with a range based on pre-
existing research literature and prior work. For example, the
learning rate was changed logarithmically from 1le-5 to 1le-2 in
order to capture both conservative and aggressive gradient step
updating. The discount factor y was shifted from 0.90 to 0.99
to evaluate short-term vs long-term planning preferences.
Exploration rate € was permitted to vary from 0.1 to 1.0 to
reflect policies that were highly exploratory as well as
exploitative. The size of the replay buffer and the batch size
control the sample diversity and training stability respectively,
while the frequency of target updates smooths temporal
changes in the Q-value targets. Finally, the network
architecture was changed in depth (1-3 layers) and width (64-
512 units for each layer) to facilitate both easy and difficult
navigation tasks. To highlight the hyperparameters that were
optimized in this study, the final optimal search ranges
identified through the BO process are provided in Table 3
alongside the optimal values.

Table 3: BO Search Space Ranges and Final Optimal VValues
for Each Parameter

Network Architecture 1-3 layers, 64-512

units

2 layers, 256 units

Hyperparameter Search Range Optimal Value
(BO)
Learning Rate le-51to le-2 3e-4
Discount Factor (y) 0.90t0 0.99 0.95
Exploration Rate (g) 0.1t01.0 0.25
Replay Buffer Size 10,000 to 1,000,000 500,000
Batch Size 32 to 256 128
Target Network Update 100 to 10,000 1,000
Frequency

These ranges have been set to allow exploration in a wide
space while restricting the domain to areas which have
previously shown convergence probability in robotic DRL
systems. This balance is important for the effectiveness of
Bayesian Optimization, which is most efficient in bounded and
relevant spaces defined to the task domain.

C. Bayesian Optimization Strategy: Acquisition Function,
Surrogate Model

The optimization module of Bayesian is concentrated on the
capability of building a surrogate model of the DQN’s
objective performance profile and steering the search with
uncertainty-based sampling. We selected a Gaussian Process
(GP) model as the surrogate, given its adeptness in smooth
function modelling, even with accompanying noise. The GP
was given a modest set of initial random evaluations (5-10),
which would be progressively improved with every batch of
hyperparameter trials.

The selected acquisition function is Upper Confidence
Bound (UCB), which is defined as the mean prediction of the
GP plus a scaled standard deviation. It allows balancing
between exploiting regions with high perceived rewards and
exploring low-confidence areas, where the model may lack
reliable information. The acquisition parameter was annealed
over time, gradually changing from exploration to exploitation
as more evaluations were performed. Asynchronous batch BO
enabled the parallel evaluation of multiple configurations.

Each trial of the DQN training process was run for 200
episodes. The cumulative reward averaged over the last 20
episodes of each trial was used to update the GP, serving as the
benchmarking reward. This metric smoothens the impact of
random fluctuations associated with log stochastic variability
from individual runs while providing meaningful evaluation of
policy performance. The BO loop was set to a cap of 50
iterations or when convergence was observed in cumulative
reward, regardless of BO loop iterations performed.

With each iteration of the optimization, the GP model
enhanced the approximation of the reward landscape. This is
apparent in Figure 3, where the convergence curves of DQNs
trained with best-BO-found hyperparameters are contrasted
against those trained using arbitrary configurations. The BO-
optimized model outperformed the rest in terms of cumulative
reward and exhibited smoother learning patterns,
demonstrating the advantages of data-efficient tuning on policy
stability.

250 | 4= Best Hyperparameters (BO)
-~ Random Hyperparameters

= e
o 1=}
=) =)

,_.
=3
=3

Cumulative Reward

0 25 50 75 100 125 150 175 200
Episode

Figure 3: Convergence Curve of Best vs Random
Hyperparameter Sets

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

In order to visualize the reward received from different
configurations within the search space, Figure 4 was created.
It demonstrates the obtained reward from various
configurations in the search space. Each coloured point marks
a trial, plotted using learning rate and discount factor, while
the colour indicates the cumulative reward. Clearly, there are
certain regions of the space (e.g., low learning rate and
moderate y) that reward more over multiple trials which
suggests the model’s tendency to prefer more stable
conservative updates during value learning.

0.98
x 240
x x x
= 0.96
= " % 230
£ z
v x [
i X 4
7]
- x
S 094 g
g 1220 9
2 x I
x
x
0.92
x x
{210
x
x
x X
0.90
10°° 102

Learning Rate (log scale)

Figure 4: Reward Distribution Over Hyperparameter
Configurations

This supports not only the accuracy of the optimization
method, but also aids researchers and engineers to focus their
hyperparameter tuning in efforts on more promising regions.

D. DOQON Implementation with Optimized Parameters

After acquiring the optimal hyperparameter values using
Bayesian optimization, it was decided to keep them and use
them to train a final DQN model for downstream
benchmarking. This model, denoted BO-DQN, had the same
architectural framework that was previously described, but
was fully parameterized with the optimal values provided.

The discounting parameter with value 0.95 provided a
balance between mediacy spontaneity and future orientation
while a discounting learning rate of 3e-4 allowed for fast
updates without destabilizing training. 0.25 exploration rate
was set to enable sufficient exploration and reduce to
exploitation as the policy improved. The batch size of 128 and
replay buffer of 500,000 samples ensured adequate diversity
and stability of gradients. Updating the target network every
thousand steps ensured temporal smoothness and the
architecture used two hidden layers of 256 units each, which
had display strong performance in medium-complexity
navigation tasks.

The BO-DQN model was evaluated on both simulated and
real-world tasks, as described in the next section, and the
results are included. The constant overperformance of BO-
DQN against its non-optimized versions proves that it is not
only an efficient hyper-parameter tuning method, it's also a

6

practical means for successfully deploying deep reinforcement
learning on real robotic tasks.

IV. EXPERIMENTAL SETUP
A. Robotic Simulation and Hardware Environments

Research employing both high-fidelity simulation and real
robotic systems was conducted to test the BO-DQN framework
in different contexts. Procedure of Turtle Bot 3 simulation was
done in ROS Gazebo where differential drive mobile robots
work in 2D maps of escalating difficulty that are generated
procedural. These environments apply LiDAR based
perception, wheeled-encoder odometrical, and dynamic
systems with injected noise to simulate the real-world tyranny
of automation where robots are imperfect and unpredictable.

The physical verification was done on the Turtle Bot 3 with
Raspberry Pi 4 and OpenCR 360 degree lidar. The robot was
teleoperated using ROS2, and all models were run on an edge
computing node (Jetson Nano) mounted on the robot. The
physical constraints of the platform served as a practical
reference for evaluating the model’s effectiveness, inference
time, and performance under conditions of noise from the
sensors and delays from the actuators.

Both types of robots executed distinct action navigation
using four basic primitives: advance, stop, rotate right, and
rotate left. Each episode began with a randomly placed goal
and an unknown configuration of obstacles. The state of the
agent was modelled with a 12 dimensional vector describing
the position of the obstacle with respect to the robot's laser
scanner working in a 180-degree range, the distance to the
goal, and the robot’s angle. The reward function attached
penalties for colliding with obstacles, rewards for making
progress towards the goal, and provided additional bonuses for
moving in a fluent manner.

B. Navigation Tasks and Evaluation Metrics

In order to guarantee thorough evaluation, four navigation
cases with increasing levels of difficulty were developed.
These tasks aimed to assess generalization, robustness, learning
efficiency, and effectiveness within restrictive spatial and
temporal boundaries.

The first task, Simple Maze, consisted of guiding the agent
through corridors where the layout was relatively
straightforward and unobstructed in lieu of measuring the
policy convergence rate. The second, Obstacle Course,
consisted of sharp turns with static obstacles that needed
precise pathing. The third, Dynamic Agents, added other active
robots which caused partially stochastic obstruction structures.
Finally, the fourth task, Cluttered Space, was a dense semi-
structured map where sensor noise and goal affording
occlusion were high, aimed at understanding the model’s
adaptability and memory abilities.

As illustrated in Table 4, every activity was given a
complexity score between 1-5 considering spatial variability,
path unpredictability, and the degree of manoeuvring required.
The evaluation metrics were chosen in accordance and for
Simple Maze, completion time was used, Obstacle Course was
evaluated based on the distance with collision-free paths,
Dynamic Agents gauged the success rate of goals
accomplished and Cluttered Space was evaluated on the
smoothness and efficiency of the path taken.

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

Table 4: Task Descriptions, Complexity Scores, and Metrics Used

n Description

Complexity Score (1-5) | Primary Evaluation Metric

Simple Maze Basic corridor navigation with single goal

Completion Time

Obstacle Course Static obstacles with narrow passages

Collision-Free Distance

Dynamic Agents

Moving obstacles and variable spawn points

Cluttered Space

High-density layout with dead-ends and sensor noise

1
3
4 Goal Success Rate
5

Path Smoothness

The procedures were performed 50 times using different
random seeds and the average result was taken for statistical
validity. All the models were subjected to the same
environmental seeds and initial conditions which enabled a
fair comparison across different tuning strategies and
architecture configurations.

Figure 5 demonstrates the average completion times for
each of the tasks which indicates the efficiency differences in
navigation. As suspected, the more difficult environments had
longer and more complicated paths which required finer
control and deeper planning. Although BO-DQN was faster
than most of the baseline models during the Cluttered Space
task, it proved to be the most challenging due to local minima
traps and sparse reward signals.

= — ~N
o w o

Average Completion Time (s)

Simple Maze

Obstacle Course Dynamic Agents
Navigation Task

Cluttered Space

Figure 5: Completion Time Across Navigation Tasks

C. Baseline Configurations for Comparison

In order to make accurate comparisons, these three baseline
configurations were set:

1. A standard DQN with default settings from previous
work (e.g., learning rate = 1e-3,y=0.99,£=0.1).

2. A grid search tuned DQN with hyperparameters chosen
manually over a coarse search grid.

3. A random search tuned DQN with parameters sampled
uniformly within valid ranges.

Each of these models trained with the same episodes,
network structure, and reward functions. The critical
distinction was in the method of hyperparameter optimization.
For all models, 200 episodes per task were executed and the
same metrics were used to assess them.

The benefits of BO-DQN became evident when examining
learning curves, path stability, and convergence rates. These
parameters led to greater policy improvement and consistency
over randomized starting conditions. In particular, BO-DQN
showed superior performance to other methods in the
Dynamic Agents task where the reward terrain constantly

changed due to unpredictable moving obstacles.

To evaluate navigation accuracy, the average path deviation
of the robot from the optimal path across different training
episodes is illustrated in Figure 6. The BO-DQN model
consistently reduces path deviation while baseline models
showed erratic deviation patterns and did not improve after
some time. This indicates that there exists a more efficient
convergence to effective policies under BO-optimized
conditions, albeit with greater control.

20}

18 -

Path Deviation (cm)
- - = =
(=] N = (=1}

x
x
x
x
x

@
x

=]
x

0 20 40 60 80 100

Number of Episodes

Graph 6: Robot Path Deviation vs Number of Episodes

The reduced deviation from the expected path is significant
for indoor delivery, warehouse navigation, and assistive robotic
devices use cases where smooth motion is required due to
narrow hallways and proximity to humans.

D. Computational Resources and Software Stack

All experiments were conducted in a hybrid setup comprised
of workstation class servers and handheld devices with
integrated components. Training experiments were run with an
Intel i9 CPU, 64GB RAM, and an NVIDIA RTX 3090 GPU.
Such a configuration allows rapid assessment of
hyperparameter settings during Bayesian optimization. For
deployment testing, policies were transformed to compact
inference graphs and deployed onto jetson nano boards with
TensorRT optimization.

The software stack was developed with the tools of Python
version 3.9, simulation done with OpenAl Gym, while
PyTorch 2.0 along with BoTorch and GPyTorch libraries were
used for Bayesian Optimization. ROS2 was implemented for
message passing and controlling the robot, while visualization
was done using RViz. Performance across different models and
runs was tracked using Weights & Biases which allowed
logging, model checkpointing, and evaluation metrics to be
tracked consistently.

For reproducibility purposes, all the code and environment
details were encapsulated into a container using Docker. Fixed
seeds were used to control randomization for tasks, and the
sensor noise models were adjusted to represent realistic lidar

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12
jitter and range error.

The practicality of BO-DQN was tested rigorously
confirming its effectiveness. It also showcased the
effectiveness hyperparameter optimization on systems that
require tuning to learn, making the process reliable and
efficient.

V. RESULTS AND PERFORMANCE EVALUATION
A. Navigation Accuracy and Task Completion Time

To evaluate the effective control of BO-DQN, the average
task completion time and navigational accuracy of the agent
were measured for all four environments. These parameters
serve as primary measures in any robotic navigation
benchmark; accuracy refers to the agents ability to achieve
targets with minimal collisions, while task completion time
represents the efficiency of the path taken as well as the time it
takes to make decisions.

BO-DQN had the highest average navigation accuracy with
a task success rate of over 92% for all environments. In
contrast, both the grid-tuned and randomly tuned models only
achieved 85% and 78% success rates, respectively. The
Cluttered Space scenario had the most pronounced accuracy
gap with BO-DQN achieving 88% success compared to the
random baseline of 68%, demonstrating the model’s strength
in difficult environments with sparse rewards and many dead-
ends.

As illustrated above, the completion time analysis showed
that BO-DQN accomplished the objective in 10-20% fewer
steps compared to the other models. This is due to better
policy generalization coupled with optimal action selection as
a result of the tuned hyperparameters. The BODQN agent had
a better ability to take advantage of temporal dependencies,
resulting in smoother and more direct paths being generated.

B. Episode-Wise Reward and Convergence Analysis

The speed and reliability with which a model converges to a
stable, high-reward policy indicates the quality of learning. To
assess this, we calculated the smoothed episode-wise
cumulative rewards for BO-DQN, grid search DQN, and
random search DQN over 200 episodes and plotted the results,
which are presented in Figure 7.

As already mentioned, BO-DQN has faster convergence and
smoother reward progression. Starting from near zero
cumulative reward, BO-DQN surpassed the reward mark of
200 by episode 90, whereas the grid search model only
reached this mark after 140 episodes. The random search
configuration could hardly surpass 160 reward points even by
episode 200, with larger reward volatility caused by
hyperparameter mismatches.

250 — o pon

Grid Search

Random Search

Smoothed Reward
= ~
7] S
=] =

=
=)
=]

w
=]

o 25 50 75 100 125 150 175 200
Episodes

Figure 7: Smoothed Reward Over Episodes (BO vs Grid vs
Random)

Efficient hyperparameter tuning is yet again demonstrated in
these reward smoothing graphs. BO-DQN’s acquisition-driven
hyperparameter search helps in finding strongly performing
parameter regions quickly, preventing the use of naively
searched samples. This reallocation of resources leads to
efficacious management of episode budgets, an important
factor in robotics as each episode can represent hours of actual
time.

C. Computational Efficiency and Sample Usage

Further surpassing the accuracy and reward, robotic learning
systems must attend to their efficiency. In this study, we
focused on sample usage by analysing the number of episodes
needed for convergence in each environment. We defined
convergence as the state in which average reward, over a fixed
period of time, remained within 5% of its maximum for 20
subsequent episodes.

As presented in Flgure 8, BO-DQN had a faster convergence
rate than other tuning methods, such as grid and random
tuning. For the Simple Maze, BO-DQN was able to converge
within 50 episodes, but the random search model needed
almost double the attempts. For the Cluttered Space model,
which is more advanced, BO-DQN was able to reach
convergence in 100 episodes while grid search slowed to 140
and random search further stagnated at 170 episodes.

. BO-DQN
B Grid Search
Random Search

Episodes to Convergence
= e e
8 @ @ 5 N = O
s &8 8 8 & 5 s

e
=

)

Obstacle Course Dynamic Agents
Environment

Simple Maze

Cluttered Space

Figure 8: Episode Count to Convergence in Different
Environments

This speed increase is due the BO surrogate model’s ability
to focus on high-utility areas in the hyperparameter space
instead of randomly probing. These results are extremely
beneficial for resource limited robotics systems where
lessening the training iterations leads to reduced battery
consumption, reduced wear cycles, and improved deployment
feasibility.

Moreover, BO-DQN experienced lower wall-clock training
time per policy. The replay buffer utilization and
hyperparameter settings that resulted in faster gradient
convergence increased efficiency over the policy. The model
also confirmed it’s real-time deployment suitability when it’s
inference latency remained below 40ms on embedded devices.

D. Generalization Across Environments

The primary objective of robotic learning is generalization,
that is, being able to transfer a trained policy across different
environments, sensors, and operational conditions. In

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

attempting to evaluate this, we placed trained models in new
environments with completely different layouts, goal
locations, and simulated sensor noise. Each model was given
100 new configurations without any further training.

Under these novel conditions, BO-DQN achieved 89% of
its original performance. In contrast, grid and random models
only managed 78% and 65%, respectively, which suggests
they are overfitting and unstable to variation. This result
illustrates the importance of hyperparameter optimization,
which not only improves in-domain performance but also
increases model robustness to domain shift.

To explore this further, we additive noise to the sensor
readings from the model during inference. This noise is zero-
mean Gaussian with increasing standard deviation. Figure 9
illustrates the policy success rate versus the level of noise
injected.

x
1.00 N
x X X

0.95 x x x
o x
& 0.90f xx Xy
@ x X
[x
0 0.85 x
=
w x
oy x X
= 0.80}
E? X x

X X
0.75} X
x
x x
0.70} x x
0.0 0.1 0.2 0.3 0.4 0.5

Sensor Noise Level (std dev)

Figure 9: Policy Robustness Against Sensor Noise

As noted, BO-DQN performed at a success rate of over
85% up to a noise standard deviation of 0.3. Other models,
conversely, performed worse, failing below 70% at the same
threshold. This robustness could stem from BO being able to
find hyperparameter settings that facilitate smoother Q-
function approximations along with more favourable error
margins in policy decisions.

Unified, these results validate the assumption that Bayesian
Optimization facilitates faster policy convergence and
improves efficiency as well as increases the world’s real life
effectiveness which is highly needed by robotic systems
working on navigating through noisy, uncertain and variable
environments.

V1. DISCUSSION
A. Interpretability of Hyperparameter Influence

One powerful motivation for BOS for hyperparameter
optimization was performance improvement but emphasis was
placed to deep dive using learning behaviour. Probabilistic
modelling of BO provides a posterior over the performance
surface enabling thorough sensitivity analysis detailing how
each hyperparameter affects the final output policy quality. In
the present work, we assessed this analysis using the variation
in average cumulative reward due to individual
hyperparameter changes while other hyperparameters were set
fixed. The results of this analysis are shown in Figure 10.

The analysis uncovered that the learning rate has the
greatest normalized effect on the final policy performance at
0.35, which is in line with literature because learning rate

9

determines how finely the Q-network gets updated, and
incorrect learning values lead to instability or learning that is
overly conservative. Both exploration rate and network
architecture depth were also among the top parameters, scoring
0.28 and 0.30, respectively. This indicates that the ability of the
agent to explore as well as the scope of the neural function
approximator are essential in the development of robust
navigation policies.

o o o]
o S = w
3 ¥ = [

Sensitivity Score (Normalized Impact)
o
&

Figure 10: Sensitivity Analysis of Each Hyperparameter on
Final Score

On the lower end, batch size and target update frequency
parameters had lower contributions (0.12 and 0.15);
nonetheless, they are still important for maintaining gradient
stability and learning synchronization. It was surprising to see
the discount factor have moderate influence, supporting the
idea that in the context of DQNs for navigation, effective
temporal credit assignment is necessary but not all-important.

The aspect of the BO system under consideration results in a
useful extra benefit other than optimizing performance. In
contrast, it allows roboticists and engineers to effectively
change model parameters with respect to specific hardware or
mission limitations. One can focus on optimizing the most
important hyperparameters instead of starting the tuning
process from the ground up, thus greatly minimizing the search
effort while achieving excellent outcomes.

B. Trade-Offs in Computation vs Performance

Incorporating Bayesian Optimizations comes with upfront
costs as time and resources must be spent on identifying the
performance landscape through a Gaussian Process or other
surrogates. This includes model fitting, acquisition function
evaluation, and multiple policy training runs to exercise the
search space. Nevertheless, this overhead is paid off with time
through quicker convergence in policy training and more
sample efficient exploration.

Our analyses reveal that even though BO spent an additional
20-30% on time with the preliminary tuning passes compared
to random search, the policies as a result gave far fewer
episodes to achieve convergence. Additionally, BO-DQN
agents proved to be more efficient in the execution of tasks
with faster completion times and more fluent paths, resulting in
reduced cumulative training time and energy expense
throughout the entire deployment pipeline.

Another trade-off is between the surrogate model's
complexity and performance. While GP's uncertainty estimates
are strong, they are not suitable for scalability with large

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

amounts of observations. To mitigate this, we constrained the
number of BO iterations to 50 and looked at batch evaluation
with asynchronous UCB. Future work may include scaling
approaches like Tree-structured Parzen Estimators and
Bayesian Neural Networks which eliminate the need for
computational bottleneck while maintaining the beneficial
sides of probabilistic modelling.

Considering BO's profit estimates alone, the trade against its
computational expense seems positive, particularly where
training data is costly, and each episode poses a risk to either
the hardware or incurs physical wear. To elaborate, the
agreement cost is stringent, meaning the sum of all possible
policies that may be learned is less than the cost of efficient
hyperparameter tuning BO's profit estimates alone.

C. Real-World Deployment Challenges

Sim and physical platform performance benchmarks display
the ease of efficiency in the BO- DQN architecture. It faces
new challenges when transferring to real world scenarios. The
first problem is the gap in the domain of the training
environment and the actual operational environment. There are
many ways in which door friction, lighting, actuator lag, or
sensor calibration can affect state change which are not
captured in the training stage and can be implemented into
training. While noise injection and randomization were
executed as field tests onto the BO-DQN, one-off deployments
will have to rely on more rigorous guarantees of robustness
from some sort of meta learning or online adaptation.

A certain level of concern needs to be raised because of
how tight computational resources are on edge devices. Even
though BO allows the tuning to be targeted to inference
productivity, the tuning process itself needs a server grade
computer. Assuming full embedded pipes, it would be
necessary to tune in simulation and load the egged onto target
platform, which prompts the issues of transferability and cross
domain generalization our model results do not answer
completely, but do address.

Tracking and safeguarding are essential for executing BO-
DQON. In the case of physical robots, unpredicted policy
execution might result in robots colliding into objects or
getting damaged. Some of these risks can be lessened with
human-in-the-loop supervision, model uncertainty estimation,
and rule-based fail-safes. As with most things in life, there is
no universal solution to transferring hyperparameters from one
task to a more complex and related task out there. A potential
candidate could be hierarchical BO or multi-task surrogate
models where shared priors are learned across navigation
domains.

Despite any possible drawbacks, it can be said with
confidence that BO-DQN brings us closer to automating the
learning process of robots. Self-optimizing systems increase
robotics’ efficiency, reduce the workload of system
integrators, standardize multiple deployments, and have the
capability to adapt based on the feedback from the
environment; all of which are required when trying to scale
intelligent agents in the real world.

D. Comparison with Other Reinforcement

Strategies

Learning

As with other robotic control systems, deep Q-learning is
one of a vast array of algorithms used for reinforcement
learning. Alternatives to policy optimization that focus on
continuous action spaces include DDPG and PPO, which are

10

examples of actor-critic methods that directly optimize policy
gradients. Such algorithms have also proven more effective
than DQNs in certain situations, but there are also new
hyperparameter problems that stem from them. These include
critic and actor learning rates, entropy coefficients, and
clipping thresholds.

In comparative analyses, DQNSs are typically more stable for
discrete action space problems and do not need as much on-
policy interaction, making them advantageous for cases where
real-time feedback is limited. Additionally, their dependence
on replay buffers permits caches and generalization for
improved performance. BO-DQN captures these features while
reducing DQN tuning sensitivity with structured optimization,
resulting in performance equal to or better than PPO in sparse
reward scenarios.

Also, as an optimization layer, BO is behavioural agnostic.
Any surrogate-based search could be used for PPO, DDPG,
Soft Actor-Critic (SAC), or any type of amalgamated model-
based RL frameworks. Follow-up research may apply our BO
framework in these areas and study if the advantages of
sample-efficient tuning are maintained across different learning
paradigms.

Another comparison point is with AutoRL frameworks that
leverage either evolutionary strategies or reinforcement
learning to adjust the learning pipeline. While all these
methods provide full pipeline automation, they are very
compute intensive and suffer from the absence of uncertainty
modelling and interpretability that BO provides. Hence, BO
performs best in terms of sample efficiency and provides the
required analytical transparency when deployed in real-world
situations, making it most suitable for robotics applications
where cost, risk, and interpretability are a concern. The
summary indicates that the BO-DQN method captures value in
deep learning, particularly in reinforcement learning. It
integrates mature Q-Learning with Bayesian Optimization and
offers complete sample efficiency and interpretability in
robotic navigation tasks.

VII. CONCLUSION AND FUTURE WORK
A. Summary of Findings

The presented work describes a new principle-driven and
performance-focused strategy based on the use of Bayesian
Optimization (BO) to automate hyperparameter tuning in Deep
Q-Learning Networks (DQNS), especially for real-time robotic
navigation systems. With the development of the BO-DQN
framework, we showed that aggressive data-efficient
hyperparameter tuning does not only make learning more
efficient but yields better navigation policies in simulations and
real robot environments. The simulations as well as real robotic
navigation systems validated the benefits of BO for
hyperparameter tuning as opposed to traditional grid and
random search methods. BO-DQN was shown to achieve faster
convergence, higher cumulative rewards, and more robust
policies out of all the different environments, including the
more complex obstacle and dynamical environments. The
tuned models demonstrated greater task performance after
fewer episodes, leading to sample efficiency and real-world
relevance.

Our sensitivity analysis reaffirmed that the hyperparameters
of learning rate, exploration rate, and network architecture
have deep impact on model performance and Bayesian
techniques are more efficient at locating optimal regions in
these parameter spaces than blind or exhaustive searches. The
focus on probabilistic modelling not only enabled better tuning
but also understanding the drivers of performance in DQNSs for

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

navigation tasks.

B. Implications for Robotic Learning Automation

The consequences of this research are oriented towards the
automation and deployment of robotic learning, which is
sophisticated in its implications. In practical robotics
applications, where prototyping comes at a high cost and
reckless actions can result in damage to the hardware, making
the most effective use of the learning pipeline becomes the
most challenging constraint. Discriminative BO-DQN solves
this problem because it allows robots to improve their
behaviours more quickly with fewer samples, and even more
importantly, with very restrictive available compute power.

Our results lead us to advocate for the combined use of
Deep Q-Learning and BO for mobile robot platforms,
particularly where both discrete decision making and reactive
planning are required. This encourages autonomous robotic
systems to change their learning process without manual
tuning which minimizes the need for expert help. In addition,
the integration and posterior uncertainty estimates in addition
to acquisition functions makes the process transparent and
trustable when deploying learning agents in sensitive
environments.

With the increase in utilization of robots for tasks like
warehouse logistics, surveillance, healthcare robotics, and
delivery, there is a need to automate the learning process as
well. Minimally Adaptive Open-Ended BO-DQN (BO-DQN)
provides a modular framework that is easy to extend and
deploy; it can be integrated into robotic pipelines with little
changes to the overall architecture and control flow. Its
versatility to many different hardware setups, environments,
and tasks makes it a valuable system’s infrastructure for
supporting scalable autonomous learning.

C. Future Work: Multi-Agent Navigation, Real-Time BO
Integration

This work was cantered around single-agent navigation with
a static BO in offline training, however, there are a number of
exciting possibilities for further investigations. There is one
extension which appears to be straightforward which is
extending the BO-DQN framework to include multi-agent
navigation. In these situations, agents will often need to work
together or compete in the same environment, which adds
another layer of difficulty for policy optimization. Multi-agent
reinforcement learning (MARL) environments typically have
training instability because of the non-stationary behaviour of
other agents. The use of BO might help hyperparameter tuning
across cooperative and adversarial scenarios and allow for
more effective scalable policy learning in swarm robotics or
autonomous fleet control.

Integrating real-time Bayesian Optimization into the
training loop is another key focus area. Existing BO
techniques are almost exclusively batch and offline, but real-
time BO would mean hyperparameters could be altered during
system deployment. That would permit robotic systems to deal
with drift in dynamics, changes in the environment, or shifting
task goals without incurring full retraining overhead. Current
developments in streaming Bayesian Optimization as well as
contextual bandit learning may provide a relevant solution.

Also, | examine future designs where BO is blended with
other optimization methods like BO with gradient-based or
evolutionary search to harness other features of the
performance landscape. The possibility of using transferable

11

hyperparameter priors for related tasks, environments or even
types of hardware will be studied which may facilitate efficient
policy porting in modular robotic systems.

In a systems view, constraints in real-life such as energy
consumption, thermal limits, and smoothing of actuation also
have to be considered and optimized in an objective function of
BO. This turns the imperfect system into a multi-objective
optimization problem which looks for a trade-off between
learning quality, longevity, and safety of the system — which
brings the system one step closer toward autonomous and
intelligent robotic systems.

The work demonstrates the importance of BO in learning
robotics for the new era by deep learning termed as BO-DQN
that integrates a methodical approach to addressing
reinforcement learning. In the case where learning is achieved
by robots, complex and dynamic environments can be mapped
and understood within a short span of time. Further
modifications to the proposed system will render it a self-
sufficient learning system, which would expedite the adoption
of robotic systems in various sectors.

REFERENCES

[1] Silver, David, et al. "Mastering the game of go without human
knowledge." nature 550.7676 (2017): 354-359.

[2] Levine, Sergey, et al. "End-to-end training of deep visuomotor policies."
Journal of Machine Learning Research 17.39 (2016): 1-40.

[3] Mnih, Volodymyr, et al. "Human-level control through deep
reinforcement learning." nature 518.7540 (2015): 529-533.

[4] Tai, Lei, Giuseppe Paolo, and Ming Liu. "Virtual-to-real deep
reinforcement learning: Continuous control of mobile robots for mapless
navigation." 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, 2017.

[5] Henderson, Peter, et al. "Deep reinforcement learning that matters."
Proceedings of the AAAI conference on artificial intelligence. Vol. 32.
No. 1. 2018.

[6] Hester, Todd, et al. "Deep g-learning from demonstrations." Proceedings
of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018.

[7] Fujimoto, Scott, Herke Hoof, and David Meger. "Addressing function
approximation error in actor-critic methods." International conference on
machine learning. PMLR, 2018.

[8] Francois-Lavet, Vincent, et al. "An introduction to deep reinforcement
learning." Foundations and Trends® in Machine Learning 11.3-4 (2018):
219-354.

[9] Shahriari, Bobak, et al. "Taking the human out of the loop: A review of
Bayesian optimization." Proceedings of the IEEE 104.1 (2015): 148-175.

[10] Frazier, Peter I. "A tutorial on Bayesian optimization." arXiv preprint
arXiv:1807.02811 (2018).

[11] Calandra, Roberto, et al. “Bayesian optimization for learning gaits under
uncertainty: An experimental comparison on a dynamic bipedal walker."
Annals of Mathematics and Artificial Intelligence 76 (2016): 5-23.

[12] Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep reinforcement
learning with double g-learning.”" Proceedings of the AAAI conference
on artificial intelligence. VVol. 30. No. 1. 2016.

[13] Tai, Lei, Giuseppe Paolo, and Ming Liu. "Virtual-to-real deep
reinforcement learning: Continuous control of mobile robots for mapless
navigation." 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, 2017.

[14] Zhu, Kai, and Tao Zhang. "Deep reinforcement learning based mobile
robot navigation: A review." Tsinghua Science and Technology 26.5
(2021): 674-691.

[15] Zhang, Chiyuan, et al. "A study on overfitting in deep reinforcement
learning." arXiv preprint arXiv:1804.06893 (2018).

[16] Mania, Horia, Aurelia Guy, and Benjamin Recht. "Simple random search
provides a competitive approach to reinforcement learning." arXiv
preprint arXiv:1803.07055 (2018).

[17] Hessel, Matteo, et al. "Rainbow: Combining improvements in deep
reinforcement learning." Proceedings of the AAAI conference on
artificial intelligence. Vol. 32. No. 1. 2018.

[18] Bostan, Alin, et al. "Stielties moment sequences for pattern-avoiding
permutations.” arXiv preprint arXiv:2001.00393 (2020).

[19] Falkner, Stefan, Aaron Klein, and Frank Hutter. "BOHB: Robust and
efficient hyperparameter optimization at scale." International conference

Journal of Intelligent Systems with Applications 2023; 6(1): 1-12

on machine learning. PMLR, 2018.

[20] Yu, Yue, et al. "Obstacle avoidance method based on double DQN for
agricultural robots." Computers and electronics in agriculture 204
(2023): 107546.

[21] Naya, Katsumi, et al. “Spiking neural network discovers energy-
efficient hexapod motion in deep reinforcement learning." leee Access 9
(2021): 150345-150354.

[22] Chen, Guangda, et al. "Deep reinforcement learning of map-based
obstacle avoidance for mobile robot navigation." SN Computer Science
2 (2021): 1-14.

[23] Jeng, Shyr-Long, and Chienhsun Chiang. "End-to-end autonomous
navigation based on deep reinforcement learning with a survival penalty
function." Sensors 23.20 (2023): 8651.

12

