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Abstract—In this study, Steady-State Visual Evoked Potential
(SSVEP)-based Brain-Computer Interface (BCI) system, which is
popular in many sectors (game, defense, sports, etc.), especially in
medicine, was composed. In addition, a robot hand was designed
to be integrated into the BCI system, especially to help partially
or completely disabled individuals. For this purpose, feature
extraction was performed using discrete wavelet transform (Db6)
from SSVEP signals recorded from seven different frequencies
(6, 6.5, 7, 7.5, 8.2, 9.3, 10 Hz) and four different individuals.
Extracted features were classified by support vector machine
(SVM) and k-nearest neighbor (k-NN) algorithms. According to
the classification results, the highest performance was obtained
in the SVM algorithm with an accuracy of 84%.

Keywords—steady-state visually-evoked potentials; brain-
computer interfaces; wavelet transform; machine learning

Özetçe—Bu çalışmada, günümüzde medikal başta olmak üzere
bir çok sektörde (oyun, savunma, spor vb.) popüler olan Du-
rağan Durum Görsel Uyarılmış Potansiyel (SSVEP) tabanlı Beyin
Bilgisayar Arayüzü (BCI) sistemi oluşturulmuştur. Ayrıca BCI
sistemine entegre edilecek, özellikle kısmen veya tamamen engelli
bireylere yardımcı olması için robot el tasarımı gerçekleştir-
ilmiştir. Bu amaçla, öncelikle yedi farklı frekanstan (6, 6.5, 7, 7.5,
8.2, 9.3, 10 Hz) ve dört farklı bireyden kaydedilen SSVEP sinyal-
lerinden, ayrık dalgacık dönüşümü (Db6) kullanılarak öznitelik
çıkarımı gerçekleştirilmiş. Çıkarılan öznitelikler destek vektör
makinesi (SVM) ve k-en yakın komşuluk (k-NN) algoritmaları
ile sınıflandırılmıştır. Sınıflandırma sonuçlarına göre en yüksek
başarım %84 doğruluk değeri ile SVM algoritmasında elde
edilmiştir.

Anahtar Kelimeler—durağan durum görsel uyarılmış potan-
siyeller; beyin bilgisayar arayüzü; dalgacık dönüşümü; makine
öğrenimi

I. INTRODUCTION

A brain-computer interface (BCI) is a computer-based sys-
tem that collects, analyzes, and converts brain signals into
commands that are sent to an output device for execution. The
BCI and the user are in sync. The user creates brain signals that
encode purpose after a period of training, and the BCI decodes
the signals and converts them into commands to an output
device that carries out the user’s goal after training as well.
BCI’s major purpose is to help persons with neuromuscular
illnesses such as amyotrophic lateral sclerosis, cerebral palsy,
stroke, or spinal cord damage replace or recover functional
function. Brain-computer interfaces could also help with stroke
recovery and other conditions. They might improve it in the
future [1], [2].

Electroencephalography (EEG) is a noninvasive technique
for recording brain electrical activity. The electroencephalo-
gram (EEG) is a scalp-based recording of cerebral electrical
potentials. Brief action potentials that produce restricted elec-
trical fields and slower, more broad postsynaptic potentials
are examples of cerebral electrical activity. The solid angle
subtended at the electrode determines the size of the signal
recorded from a neural generator. As a result, an adjacent
microelectrode can record the activity of a single neuron, but
not a distant scalp electrode. Synchronous activity in a hori-
zontal laminar aggregate of neurons with parallel orientation,
on the other hand, could be a large enough generator to be
detected on the scalp. Over the cerebral convexity, the EEG is a
spatiotemporal average of synchronous postsynaptic potentials
occurring in radially oriented pyramidal cells in cortical gyri
[2], [3].

SSVEP-based BCI systems give a robust performance from
different laboratories. It has attracted many researchers due to
its high information transfer rate (ITR), high signal-to-noise
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ratio (SNR), simplicity in configuration, and users’ shorter
training time [3]–[6].

In this study, we wanted to create a BCI system that works
with SSVEP EEG signals. For this purpose, we first provided
SSVEP signals as ready dataset and passed them through signal
processing procedures. We designed a robot arm and assigned
functions to the robot arm with the processed signals. As
a result, we aimed to make an assistive robot arm that can
make opening and closing movements that work with SSVEP
signals.

II. MATERIALS & METHODS

A. Dataset Description
In this study, the dataset (AVI SSVEP Dataset) consisting

of SSVEP signals acquired by Adnan Vilic was used [7]. The
AVI SSVEP Dataset is public. The data set consists of SSVEP
signals, which is the control signal of the EEG, measurements
of the triggered responses of SSVEP signals from four healthy
individuals. In this experiment, individuals have seated 60
cm away from a monitor staring at a single flashing target
whose color changed rapidly from black to white. The test
stimulus is a flashing box at 7 different frequencies (6 - 6.5
- 7 - 7.5 - 8.2 - 9.3 - 10 Hz) presented on the monitor. All
EEG data were recorded using three electrodes (Oz, Fpz, and
Fz) from the standard international 10-20 system for electrode
placement. The sampling frequency of the EEG signal is 512
Hz. The reference electrode was positioned in Fz with the
signal electrode in Oz and Fpz in the ground electrode. The
dataset was acquired through four sessions, i.e. one session
for each participant. Each session was conducted with three
identical experiments. Each experiment yielded EEG data for
seven frequencies with short breaks among them and took 30
seconds.

In addition, an analog notch filter was applied to the data
obtained at interference frequency (50Hz) [8].

B. Signal Processing
Feature extraction is the process of obtaining the information

hiding in EEG signals. Time-domain, frequency-domain, and
time-frequency features have been used in EEG- and SSVEP-
based systems. One of the most popular signal processing
methods of these signals is wavelet transform (WT). There
are two major reasons to use WT. First, WT is an effective
method yield the signal in the both time and frequency
domains. Second, WT is a robust transformation method in
non-stationarity signals like all biomedical signals.

In this study, feature vectors have been calculated by using
discrete wavelet transform method. Using one Discrete Wavelet
Transform function (Db6), SSVEP signals are subdivided into
frequency subbands (delta, theta, alpha, beta, gamma) and the
energy, entropy and variance values of each band calculated.
Thus, a number of features represented in the frequency bands
were obtained.

In order to control SSVEP based BCI system, individuals
must produce different brain activity patterns that will be
recognized and identified by the system and translated into

commands. In the literature and most existing applications of
BCI, this identification process relies on a machine learning
(classification) algorithm [9]. These algorithms aim at auto-
matically estimating the class of the data as represented by
feature vectors [10]. In this paper, SSVEP based BCI system is
considered as a pattern recognition system and focuses on the
classification algorithms used to design them. The performance
of the pattern recognition system depends on both features and
classification algorithms [11]. For that reason, in this study,
feature vectors extracted from the SSVEP signal have been
tested with two different methods. These classifiers are Support
Vector Machine (SVM) and k Nearest Neighbour Classifier (k-
NN).

The k-fold cross-validation and confusion matrix evaluation
criteria were used to evaluate the performance of the classifica-
tion algorithms used in this study. k value selected as optimum
value which gives the best performance according to the trial,
it is equal five.

C. Mechanical Design of Robotic Hand
The mechanical design preferred in this study mimics the

anatomical structure of the human hand and arm as possible.
This property is important because more closer the system
designed to the natural anatomy, more functional the robotic
hand will be. There are many design suggestions about the
mechanical design in the literature [12], [13]. After the lit-
erature survey performed, InMoov company’s open source
robotic hand prototype was selected as the base design for
the project [14]. The design suggested includes a simplified
human hand model, a human-like forearm, two servo motors
and Arduino Mega as main components. For controlling the
opening and closing functions, fishing lines will be used as
non-elastic cables and placed to the inner part of the palm
and fingers inside which canals were put for the lines to pass
[15]. There will be a force sensor on each fingertip and palm.
Different from other four fingers the thumb has only two
cylinders inside therefore will be controlled independently. The
motion of the servo motor was planned to be controlled by a
simple PID controller design and an Arduino Mega providing
only the required amount of force to hold the object without
slippage [16]. For a more aesthetic and objective oriented result
a human-like forearm was designed to both hold the hand
in a fixed position and components such as Arduino Mega
and servo motors was planned to be positioned inside the
handstand providing a clean final product image. The design
of the hand was made using the 3D Computer-Aided Design
program SolidWorks.

III. RESULTS

A. Signal Processing Results
In the signal processing performed in the MATLAB envi-

ronment, the signal accuracy values obtained by training the
feature extraction kNN and SVM machine learning algorithm.

As can be seen in Table I, an accuracy of 84% was obtained
as a result of training the 8.2 & 10 Hz dual frequency
group using the SVM classification method. The accuracy rate
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of 84% is sufficient for the commands of the robotic arm.
With the help of these two frequencies, two command can
be generated with high accuracy. In addition, an accuracy
of 82.1% was observed when the 6.5 & 7 Hz frequencies
were trained using the kNN algorithm. If problems occur after
assigning commands to other frequencies, frequencies of 6.5
& 7 Hz can also be used.

B. Final Design And Application
For the final design, the prototype of both robotic hand and

handstand was completed. The static calculations for the motor
sizing and maximum load that can be lifted was calculated and
design was verified. Even though the lines that will enable the
movement of the fingers are not added yet, the cylinders in
which the lines will be wrapped and controlled were drawn
successfully. The mechanical design and operation procedure is
still open to developments and optimization for the upcoming
study. But until now, the brain controlled assistive robot’s
mechanical design was adapted for holding an object and
arrange the load applied as necessary. The handstand works
for both holding the hand stable and covering cables, actuators
to present an aesthetic image. For the application part, the
robotic hand was expected to grasp an object with unknown
geometry and dimensions (dimensions of the object limited
to hand dimensions). To do so, three different sensors being
temperature, proximity, and force, will get reading and the
data received will be used as input by the control algorithm.
Movement of the hand will either start grasping action, stop
grasping action or never start grasping due to high temperature
reading obtained and give a warning as output. Fig. 1 and 2
show both front and back views of the designed prototype.

Figure 1: Prototype Design Front View

C. Manufacturing Method
The decided manufacturing method for robotic hand is 3D

printing. The printing operation will be performed after the

Figure 2: Prototype Design Back View

prototype mechanical design reaches final form after required
developments. The material for both the hand and handstand
part was ABS due to easy printing, elasticity properties and
suitability for the application aimed.

IV. CONCLUSION AND FUTURE WORKS

The designed project will not function as a rehabilitation
device rather robotic hand will assist the person in holding
and moving an object around as the name also suggests. The
planned work packages regarding the study were completed
successfully. The mechanical design and signal processing
steps were both completed. The action which will be per-
formed by the robotic hand could be adapted to many other
areas which includes robotics. Additionally, the assistive robot
will not only aim to help the patient physically but also provide
some independency for the mean to other people. Doing so,
psychological help is hoped to be also provided. At the future
studies, the control algorithm design and 3D printing of the
prototype will be performed. Adding the completion of the
mechanical design and signal processing steps, the project will
be assembled and hopefully work without any errors.

The brain controlled assistive robot requires a free move-
ment ability for holding and transporting an object. Therefore,
first limitation comes from the weight of the hand. Considering
an object will be grasped and lifted for transportation, total
weight of the system should not exceed a certain value. The
design obtained until now will be developed further in next
study. Another validation for using ABS material was also
shown. Besides weight of the object the dimension including
the fingers, palm and wrist was designed based on average
human hand geometry. Another limitation is caused by the
sensors because of the implementation position. The robotic
hand requires specific and precise readings from the sensors
to function as planned. As a result, the position selection
of the sensors causes some minor problems. When placed
at fingertips the direct contact of sensors with the object
held will cause friction loss and this can cause slippage.
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Frequencies KNN-1 (%) KNN-2 (%) KNN-3 (%) KNN-4 (%) KNN-5 (%) SVM-1 (%) SVM-2 (%) SVM-3 (%) SVM-4 (%) SVM-5 (%)
6.0-6.5 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6
6.0-7.0 80.0 80.0 80.0 80.0 80.0 66.7 73.3 73.3 70.0 70.0
6.0-7.5 55.6 55.6 55.6 55.6 55.6 66.7 66.7 66.7 66.7 66.7
6.0-8.2 71.4 64.3 64.3 57.1 67.9 60.7 71.4 57.1 60.7 57.1
6.0-9.3 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6
6.0-10.0 59.3 51.9 55.6 51.9 59.3 59.3 55.6 55.6 55.6 55.6
6.5-7.0 75.0 75.0 82.1 75.0 78.6 75.0 75.0 75.0 75.0 75.0
6.5-7.5 56.0 60.0 72.0 60.0 64.0 60.0 60.0 60.0 68.0 64.0
6.5-8.2 53.8 50.0 61.5 61.5 61.5 53.8 50.0 61.5 53.8 50.0
6.5-9.3 52.0 56.0 40.0 52.0 48.0 44.0 40.0 56.0 52.0 56.0
6.5-10.0 52.0 52.0 52.0 52.0 52.0 60.0 60.0 60.0 60.0 60.0
7.0-7.5 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6
7.0-8.2 64.3 53.6 64.3 67.9 64.3 60.7 57.1 60.7 64.3 60.7
7.0-9.3 55.6 51.9 59.3 55.6 61.9 59.3 59.3 51.9 63.0 59.3
7.0-10.0 74.1 63.0 55.6 70.4 66.7 55.6 51.0 51.9 55.6 59.3
7.5-8.2 56.0 48.0 60.0 60.0 56.0 44.0 40.0 52.0 48.0 54.0
7.5-9.3 60.0 52.0 56.0 52.0 60.0 60.0 40.0 56.0 44.0 44.0
7.5-10.0 70.8 54.2 58.3 54.0 58.3 66.7 62.0 58.3 50.0 66.7
8.2-9.3 52.0 44.0 52.0 36.0 64.0 52.0 48.0 48.0 44.0 60.0
8.2-10.0 72.0 52.0 72.0 76.0 76.0 68.0 68.0 84.0 84.0 84.0
9.3-10.0 41.7 33.3 54.8 37.5 45.8 41.7 33.3 54.2 50.0 54.2

Table I: Classifier performances SVM and KNN classifiers in the discrimination of frequency pairs

Additionally, inaccurate force measurements will be taken
since slippage will cause less force read. On the other hand,
sensors positioned at palm will have no effect on measuring
the force applied. As a solution to this, thin silicon or rubber
caps can be used at fingertips to prevent slippage. Another
constraint was caused by the design. Human hand drawing
is complex because of the anatomical structure and aimed
motion being complicated to mimic. This constraint resulted
in some simplifications on the final product design limiting the
usage of the hand only optimized only for holding an object.
Since the main objective was achieved, result was found to
be satisfying. Finally, the most important limitation is budget.
Budget puts some limits on the selection of parts to be used
and materials preferred. ABS material, aside being easy to 3D
print, is relatively high cost therefore limiting the dimensions
and geometry of the robotic hand. Other than material, the
cost of electronic components and EMOTIV EEG headset put
some limitations on the final product.
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