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Abstract—Industrial IoT (IIoT) systems consist of a myriad of 
sensors that generate considerable amounts of data that must be 
analyzed intelligently and in a timely fashion at the edge. The 
primary challenges in deploying machine learning models on edge 
devices are the limited computational power and the lack of 
sufficient labeled data. This work tackles the problem of self-
supervised learning (SSL) on resource-constrained intelligent edge 
devices, solving the problems of resource limitation and annotation 
bottleneck. The architecture incorporates domain-specific pretext 
tasks for industrial sensor modalities such as vibration, pressure, 
and temperature to construct embedding features without 
requiring human-labeled data. We deploy and evaluate the model 
within a heterogeneous IIoT testbed that consists of real-world 
edge devices and measure performance based on embedding 
quality, accuracy of downstream tasks, energy consumption, and 
latency. The results show that the proposed approach outperforms 
baseline supervised and semi-supervised federated learning 
models in sparse label conditions while achieving near real-time 
inference and low power consumption. This work assists in the 
deployment of scalable self-supervised intelligence at the edge for 
predictive maintenance, anomaly detection, and context-aware 
automation in future industrial systems. 

Keywords—Self-Supervised Learning, Industrial IoT, Edge 
Intelligence, Embedded AI Systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Özetçe— Endüstriyel IoT (IIoT) sistemleri, uçta akıllıca ve 
zamanında analiz edilmesi gereken önemli miktarda veri üreten 
sayısız sensörden oluşur. Makine öğrenimi modellerini uç aygıtlara 
dağıtmanın temel zorlukları, sınırlı hesaplama gücü ve yeterli 
etiketli verinin olmamasıdır. Bu çalışma, kaynak kısıtlamalı akıllı 
uç aygıtlarda kendi kendini denetleyen öğrenme (SSL) sorununu ele 
alarak kaynak sınırlaması ve açıklama darboğazı sorunlarını çözer. 
Mimari, insan etiketli veriler gerektirmeden gömme özelliklerini 
oluşturmak için titreşim, basınç ve sıcaklık gibi endüstriyel sensör 
modaliteleri için alan-özel bahane görevlerini içerir. Modeli, gerçek 
dünya uç aygıtlarından oluşan heterojen bir IIoT test yatağında 
dağıtır ve değerlendiririz ve gömme kalitesine, aşağı akış 
görevlerinin doğruluğuna, enerji tüketimine ve gecikmeye göre 
performansı ölçeriz. Sonuçlar, önerilen yaklaşımın seyrek etiket 
koşullarında temel denetlenen ve yarı denetlenen federasyon 
öğrenme modellerinden daha iyi performans gösterdiğini, 
neredeyse gerçek zamanlı çıkarım ve düşük güç tüketimi 
sağladığını göstermektedir. Bu çalışma, gelecekteki endüstriyel 
sistemlerde öngörücü bakım, anormallik tespiti ve bağlam farkında 
otomasyon için uçta ölçeklenebilir, kendi kendini denetleyen 
zekanın dağıtımına yardımcı olur. 

 
Anahtar Kelimeler—Kendi Kendini Denetleyen Öğrenme, 

Endüstriyel IoT, Uç Zeka, Gömülü Yapay Zeka Sistemleri. 
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I. INTRODUCTION 

A. Rise of Edge Intelligence in Industrial IoT 

The modern world has witnessed the rapid evolution of the 
Industrial Internet of Things (IIoT), which has transformed the 
methods and techniques of data collection, processing, and 
action triggering. Industrial systems are increasingly 
augmented by networks of intelligent sensors and embedded 
devices, together forming edge computing layers closest to the 
data source [1]. These edge devices, which are installed on the 
manufacturing floors, oil rigs, transportation hubs, and smart 
energy grids, are responsible for real-time monitoring, anomaly 
detection, condition-based maintenance, and autonomous 
control [2]. The volume and velocity of data generated in these 
environments require processing to be done almost 
instantaneously as the data inflow is too high, which renders 
cloud-only frameworks impractical for time-sensitive and 
crucial operations [3]. 

To respond to the intelligent automation shift, industries have 
begun incorporating AI features into edge devices to minimize 
the dependency on centralized computing. This increase in 
automation at the edge is motivated by multiple drivers: the 
need for ultra-low latency, the ability to function in the absence 
of constant connectivity, and the growing importance of privacy 
and security [4]. Reaching that level of intelligence, however, 
requires machine learning models that are not only efficient but 
also capable of learning and adapting without human 
intervention in a constrained resource setting [5]. 

  

B. Limitations of Supervised Learning in Resource-
Constrained Environments 

Though supervised learning biases offer an effective 
technique to learn concepts from data, the amount and quality 
of labelled data required is often suboptimal at the industrial 
edge [6]. Unlike basic annotation procedures, real-time data 
labelling of sensor data in industrial settings is highly tedious 
and difficult owing to the scale, variety, and perpetuity of data 
streams [7]. Furthermore, there are numerous challenges 
concerning the application of pre-trained supervised models on 
edge resource constrained devices which include, but are not 
limited to, low compute and memory resources, power 
limitations, and model performance degradation over time due 
to sensor drift and environmental changes. 

Inflexibility in coping with diverse or rapidly changing 
operating conditions is another problem with performance of 
supervised models [8]. For instance, a model developed for one 
production line could prove unsuccessful when transferred to an 
analogy line with slightly altered machine settings. By 
definition, edge devices need resource-frugal models that offer 
flexibility and high-metrics but, more importantly, that can 
achieve these goals with little human supervision. This creates 
the need to shift from the traditional supervised models to the 
more autonomous ones relying on machine learning techniques 
[9]. 

  

C. Emergence of Self-Supervised Learning for Edge 
Applications 

The self-supervised learning (SSL) approach has become 
popular in the recent past, especially for natural language 
processing (NLP) and computer vision (CV) [10]. SSL 
approaches construct useful feature representations without 
manually labelled data by automatically completing pre-defined 
tasks that are aimed at capturing key aspects of the raw data[11]. 
In the context of Industrial Internet of Things (IIoT), SSL can 
leverage inherent correlations present in sensor signals (for 
example, future measurement prediction, masked value 
reconstruction, and cross-modal sensor value alignment) to 
create powerful label efficient models that would be valuable in 
classification, regression, and anomaly detection tasks [12]. 

Implementing SSL on the edge creates an exciting possibility 
for developing small adaptive models that continuously learn 
from operational data while maintaining low latency and 
privacy. SSL enables smarter patterns to be detected and 
meaningful decisions to be made without cloud processing. In 
addition, there is evidence that SSL models are more robust to 
generalization under shift and noise. These properties make 
them suitable for harsh unpredictable industrial environments. 

 

D. Objectives and Contributions of the Study 

This research aims to develop, deploy, and assess a self-
supervised learning framework for automation of self-annotated 
learning tasks designed for industrial edge devices. It aims to 
solve problems like computational performance, educational 
data capture, and system design flexibility across different edge 
integration devices. In particular, we design a modular SSL 
architecture centered on lightweight encoders and projection 
heads integrated with pretext tasks tailored for multi-sensor time 
series data. The framework has been implemented on various 
edge devices such as Raspberry Pis, NVIDIA Jetson boards, and 
ARM Cortices, and tested with industrial data from vibration, 
pressure, temperature, and flow sensors. 

Self-supervised learning is a promising approach that could 
be used to address the challenge of edge intelligence and 
integration of Artificial Intelligence in Industrial Internet of 
Things (IIoT) systems, autonomously adapting to changes in an 
environment. This broad objective can be narrowed down using 
a number of case studies, from understanding the implications 
of system layout to propose an operational workflow for 
efficient AI integration. Real life data confirm self-supervised 
learning and provide a blueprint for industry stakeholders trying 
to incorporate smart self-operating systems into their 
infrastructure. 

In order to provide context in relation to the deployment 
limitations and operational requirements of edge devices and 
cloud-based systems, their features are compared in Table 1. 
This comparison demonstrates the gap for edge learning 
architectures that take the industrial automation constraints into 
consideration. 

 

Table 1: Key Characteristics of Industrial Edge Devices vs Central Cloud Systems 

Characteristic Industrial Edge Devices Central Cloud Systems 

Compute Capability Limited (Microcontrollers, SoCs) High (CPUs/GPUs/TPUs) 

Latency Sensitivity High (sub-second response) Low (batch processing accepted) 

Connectivity Dependence Intermittent or local-only Always-on high-speed internet 
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Energy Constraints Critical (battery/PoE-powered) Less critical (unlimited power) 

Data Privacy Requirements High (on-device inference preferred) Moderate (centralized analytics) 

Real-time Processing Mandatory for local automation Optional depending on use case 

Model Update Frequency Low due to bandwidth limits High (frequent retraining supported) 

 

The data presented in the table strengthens the claim that 
edge environments cannot rely on machine learning models 
constructed for the cloud. Rather, fundamental constraints of 
data, connectivity, computing resources, and environment must 
be incorporated in order to create true edge solutions. 

  

II. LITERATURE REVIEW AND MOTIVATION 

A. Overview of Self-Supervised Learning Principles 

Machine learning is undergoing a paradigm shift as self-
supervised learning (SSL) is sometimes termed the 
‘unsupervised friend’, since it exists somewhere between 
supervised and unsupervised learning [13]. SSL differs from 
traditional supervised learning because it does not rely on 
labelled data. Instead, SSL models generate supervision from 
the data itself by utilizing pretext tasks [14]. These pretext tasks 
attempt to predict some parts of the input with the goal of 
revealing hidden patterns, for example: If a specific value is 
missing, if it occurs out of sequence in time, or if it is located 
out of context. The captured representation is useful in a wide 
range of tasks, including classification, anomaly detection, and 
control, and can be further improved by a small amount of 
labelled data. 

The strength of self-supervised learning lies within its 
versatility. In computer vison, methods like image inpainting, 
rotation prediction, or contrastive learning have worked 
exceptionally well in cases where the annotated datasets are 
limited [15]. In the realm of natural language processing, BERT 
and GPT models use masked language modelling or next word 
prediction to train, constructing linguistic representations that 
span numerous national language processing tasks. Applying 
this reasoning to Self-supervised learning (SSL) in Industrial 
IoT (IIoT) environments is logical because there is an extremely 
limited supply of labelled sensor data and system variability is 
high [16]. With SSL, learning can be accomplished without 
manual intervention while contextual intelligence is captured 
from raw signals. 

  

B. Edge Computing Constraints in Industrial IoT 

With the increasing need for real time processing and 
autonomy, combined with the need for less dependence on the 
cloud, edge computing has emerged as one of the bases of IIoT 
architecture. Edge devices are less powerful compared to cloud 
systems which have abundant computing and storage 

capabilities. Edge devices, including microcontrollers and 
embedded processors, operate at low power budgets, minimal 
RAM and CPU power, and highly unpredictable network 
availability. Throughout network outages, these devices need to 
be able to sustain local inferences, as well as fast and accurate 
operations [17]. 

Resource allocation on such devices is an exercise in tightrope 
walking. Figure 1 demonstrates the resource utilization split for 
compute, storage, and energy for the edge deployment testbed. 
Effort spent on compute tasks is 40% while storage and energy 
are each 30% of the device operational burden. This equilibrium 
underlines the need to create ultra-lightweight and ultra-low 
power efficient models, particularly on devices that are battery 
operated or charged on a trickle basis. 

 

 

Figure 1: Resource Utilization Breakdown on Edge Devices 

 

Alongside, Table 2 gives the specifications of a sample of 
three edge devices from this study Edge-A1 (ARM Cortex-
A53), Edge-B2 (Intel Atom x5-Z8350), Edge-C3 (NVIDIA 
Jetson Nano). Each device has a different set of compute 
capabilities, memory, and sensor integration capabilities which 
provides a realistic picture of the diversity that needs to be 
addressed in IIoT deployment. These platforms were selected to 
validate the generalizability of the proposed SSL architecture to 
different hardware restrictions. 

 

Table 2: Edge Device Profiles Used in the Study 

Device ID CPU RAM Sensor Type Network Interface 

Edge-A1 ARM Cortex-A53 512MB Vibration, Temp WiFi, BLE 

Edge-B2 Intel Atom x5-Z8350 2GB Pressure, Flow Ethernet, 4G 

Edge-C3 NVIDIA Jetson Nano 4GB All Modalities WiFi, Ethernet 
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C. Motivation for SSL at the Network Edge 

The main reason for employing self-supervised learning at 
the edge is to solve the problem of limited labels and scarce 
available computing resources. In industrial contexts, the cost 
associated with data labelling is extremely high. 
Contextualization of sensor data is absent, expert annotation is 
tedious and time-consuming, and the semantics of real world 
degradation, abnormalities and patterns irrespective of complex 
is situational [18]. Figure 2 shows the relative proportions of 
labelled data in some common IIoT scenarios. For example, on 
average only 10 percent of predictive maintenance datasets are 
complete with ground-truth failure labels, but as much as 50 
percent of asset tracking datasets are complete due to less 
sophisticated context alignment. 

 

 

Figure 2: Distribution of Label Availability Across Industrial 
IoT Use Cases 

 

This labelled data scarcity makes it nearly impossible to train 
and deploy dependable supervised models. SSL removes this 
restriction by allowing for learning from raw, unmarked time-
series data, shifting the needs from human-annotated datasets to 
on device learning. In addition, devices with SSL constructions 
have been shown to be more resilient to noise and more 
responsive to gradual changes in the signal environment, which 
is crucial in rotated machinery, pipelines, or manufacturing 
lines. 

Also, it is important to note that the self supervised 
representation learning (SSL) approach can be localized, 
meaning that each edge device is capable of tailoring its learned 
representation to his or her own data distribution. This 
capability adds value by improving accuracy and reducing false 
alarms. This feature is helpful in heterogeneous sensor 
environments where there is a low level of generalizability of 
the data collected from one machine to others. 

  

D. Challenges in Industrial-Scale Implementation 

Although promising, the use of SSL on edge devices in 
industrial settings comes with a number of practical limitations. 
The first being that model size and compute demand often need 
to be constrained to very strict margins. Most SSL frameworks, 
like SimCLR or BYOL, are optimized for large GPU clusters 
and come with extensive augmentation pipelines that are not 
possible on embedded platforms. Therefore, there is the added 
challenge of needing to design newer architectures and 
compression methods, specifically for edge devices. 

The second limitation is that the design of pretext tasks for 

time-series sensor data is non-trivial. Unlike text or images, 
sensors do not have a spatial structure, and data from a sensor 
can come from multiple sensory modalities. There is a need to 
take precautions to ensure that the SSL tasks (temporal 
reordering, context prediction, masked reconstruction) capture 
meaningful dependencies with minimal addition of overhead or 
data leakage. The selected tasks need to be based on the physical 
behaviour of the sensors and the anticipated patterns from the 
surrounding environment. 

Third, the speed of performance imposes constraints on the 
depth and latency of inference models. In automated industry, 
the time required to recognize a problem or check in on machine 
health can mean unsafe conditions or decreased production. An 
SSL model must therefore be designed to achieve not only high 
accuracy, but also fast low power processing, especially during 
offline or weak signal periods. 

Finally, the need for consistency and security across devices 
presents new challenges for deployment. Since edge devices 
perform local learning, there is a chance of divergence or 
concept drift if the devices are working under different regimes. 
Maintaining stable and uniform embeddings throughout the 
network while enabling privacy-preserving on-device learning 
remains an unsolved problem. 

 

III. PROPOSED SSL ARCHITECTURE AND PRETEXT TASK DESIGN 

A. Self-Supervised Encoder and Projection Head Structure 

We have designed the self-supervised learning (SSL) 
modality to mitigate the limitations and support the 
requirements of smart edge devices functioning within 
Industrial Internet of Things (IIoT) ecosystems. The architecture 
is built around a temporal encoder and a projection head which 
processes multi-sensor time series data of different modalities 
like vibration, temperature, and pressure. The encoder retrieves 
temporal dependencies from raw sensor data through 
lightweight 1D Convolutional Neural Networks (CNNs) that 
operate on sliding windows. These features are then transferred 
to a projection head which is a compact multi-layer perceptron 
(MLP) that transforms the features into a latent embedding space 
where contrastive or predictive losses are computed. 

The division of labour between the encoder and projector is 
crucial in making operation at the edge efficient in terms of time. 
While the encoder captures salient local features, the projection 
head semantically compresses them for downstream 
applications. We implemented this architecture in several edge 
devices in our study. Edge A1 and Edge C3, as shown in Figure 
3, both demonstrated reliable convergence with respect to 
training epochs after twenty repetitions, with the contrastive loss 
improving steadily in each round. Because of the more complex 
sensor data and bigger model size, Edge C3's convergence rate 
was somewhat reduced, however, it reached a lower total loss, 
implying stronger final embeddings. 
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Figure 3: Embedding Convergence over Training Epochs 

  

B. Selection of Pretext Tasks for Industrial Sensor Data 

Pretext tasks are of central importance in SSL, for the 
accompanying design determines the supervisory signal the 
model learns from. For example, in SSL for images, one could 
use intuitive pretext tasks such as rotation prediction or 
cropping. In contrast, time-series data is far more intricate and 
necessitates domain-specific tasks that correspond with the 
nature of industrial sensors. Under this framework, we 
incorporated three principal pretext strategies: masked 
prediction of sensor values, verification of the temporal order, 
and forecasting based on a temporal window. These tasks were 
designed to help the MP recognitive temporal dynamics, cross-
channel dependencies, and contextual awareness in the absence 
of labelled data. 

The effectiveness of a pretext task is influenced by sensor-
type variability, which in this case is ascribed to the presence of 
vibration and temperature data which have such strong 
autocorrelation features that they can easily be predicted. On 
the other hand, pressure and flow rate sensors are more prone 
to external forces that can be applied in a stepwise fashion and 
necessitate the attention of the model to be on pattern 
recognition and tolerant anomaly representation rather than 
employing ordinary ANNNs. The effectiveness of 
accomplishing these tasks is presented in Figure 4, where 
pretext task accuracy by sensor type is displayed. Successful 
achievement peak of vibration data was 86%, followed by 
pressure data at 82%, with temperature data trailing at 78%. 
Humidity data performed the worst because it changes so 
infrequently and has a low signal-to-noise ratio. 

 

 

Figure 4: Pretext Task Success Rate Across Sensor Types 

  

C. Latency-Aware Embedding Optimization 

Any intelligent system's viability in real-life applications is 

evaluated by the overall latency in industrial settings. Timely 
and correct inference is vital in the execution of anomaly 
detection, system control, and early warning mechanisms. The 
SSL architecture solves this in an agnostic way with the 
inclusion of latency-aware optimization at the encoder and 
projection head levels by applying pruning redundant filters. In 
this case, the convolution stride has to be decreased and the 
functions activated after training have to be quantized in order 
to enhance throughput speeds. 

Moreover, the feature space dimensionality was configured to 
guarantee that the learned features were compact enough to 
facilitate downstream classification and regression with minimal 
memory or compute costs. The embedding dimension was set 
either to 64 or 128 while the cosine similarity or L2 norm was 
computed based on the pretext context. The architecture also 
contains a progressively updated embedding buffer which 
enables the construction of positive and negative samples for 
contrastive learning without loading entire datasets into 
memory. This mechanism was instrumental in achieving stable 
learning during the severe memory constraints of devices like 
Edge-A1. 

The deployment of the model and the measurement of latency 
showed that all the variations of the SSL models maintained 
inference latency of under 100 ms across the tested edge 
platforms. The Edge-C3 gave the fastest response owing to its 
optimized GPU core. Therefore, the real-time boundaries for on-
device prediction were achieved allowing for the deployment in 
industrial control loops that are time-critical. 

  

D. Architecture Adaptability Across Edge Form Factors 

Adjustability over multi-hardware environments is important 
for any industrial AI solution, particularly for heterogeneous 
IIoT ecosystems. The SSL framework was evaluated with three 
different edge profiles: low power ARM Cortex-A53 
microcontroller Edge-A1, mid-level x86 Edge-B2, and GPU 
accelerated Jetson Nano Edge-C3. Each of these deployments 
came with slight adjustments for the amount of pretext, model 
size, training configuration and complexity of the process. All 
architecture design included modular frameworks to support 
stackable extensions, meaning projection head or optimizer 
components could be changed depending on the amount of 
resources available for hardware. 

To enable greater portability across devices, model weights 
were distilled through lightweight teacher student training 
strategies. Compact student models on Edge-A1 could be 
initialized using larger teacher models trained on Edge-C3 or 
cloud to lower the cold-start representational time while 
preserving quality. This enabled all devices to continue learning 
on-device with local unlabeled data while being loosely coupled 
to the other devices in the rest of the network. 

Table 3 illustrates the elements of the SSL framework 
alongside their respective functionalities. Each module is 
designed to be modular with separate functions for pre-
processing, representation learning, and contrastive evaluation. 
This modularity not only guarantees performance efficiency but 
also accommodates enhanced features in the future such as 
online adaptation, integration of federated learning, or 
specialized task training. 

 

Table 3: Summary of SSL Model Components and Functions 

Component Function 

Sensor Input Window Aggregates multi-sensor time series into 

fixed-size windows. 
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Temporal Encoder 

(1D CNN) 

Extracts local temporal features from raw 

sensor signals. 

Projection Head 

(MLP) 

Maps feature embeddings to latent space for 

contrastive learning. 

Pretext Task Module Implements masking, reordering, and 

prediction tasks. 

Embedding Buffer Stores positive and negative pairs for 

contrastive updates. 

Contrastive Loss 

Engine 

Calculates similarity loss between anchor 

and target embeddings. 

On-Device Optimizer Applies gradient updates within compute 

and memory constraints. 

The proposed architecture for SSL is designed compactly, 
and flexibly while efficiently learning, making it suitable for the 
various edge devices found in industrial environments.  

  

IV. EXPERIMENTAL SETUP AND DEPLOYMENT ENVIRONMENT 

A. Industrial Edge Testbed Configuration 

The design for the experiments sought to achieve realistic 
IIOT deployment scenarios. The edge testbed included a 
heterogeneous collection of single board and embedded 
computers such as ARM Cortex A53 microcontrollers, Intel 
Atom boards, NVIDIA Jetson Nano boards with GPUs, and 
others. These edge platforms were placed in laboratory test beds 
designed to simulate the deployment of sensors across a number 
of industrial applications like rotating machinery, fluid 
movement pipelines, and environmental regulation systems. 
Each device had a local storage for buffering, minimal cooling 
system, and software for edge inference loaded through 
containerized modules of semi-supervised SSL. 

To maintain pertinence to a production-grade environment, 
all devices were allocated in a network-isolated mode during 
testing. This meant that neither cloud nor centralized compute 
were used for training or inference. Furthermore, the models 
were also constrained to operate under defined CPU frequency 
caps and RAM budgets in order to throttle them and simulate 
industry-representative compute, power, and RAM limits. Such 
constraints mimicked the actual scenarios many powered 
battery or ruggedized edge deployments encounter where 
compute cycles and energy expenditure need to be highly 
controlled. 

  

B. Sensor Data Collection and Preprocessing 

A comprehensive set of sensor modalities are integrated into 

the testbed as is typical of operational data in an IIOT 
environment. These are vibration, pressure, temperature, flow 
and humidity sensors, all of which were set up with appropriate 
sampling rates and designed preprocessing pipelines signals. 
According to Figure 5, the largest observed share of collected 
data relative to sensors was achieved by vibration sensors at 
30%, followed by temperature sensors at 25%, pressure sensors 
at 20%, flow sensors at 15%, and humidity sensors at 10%. The 
pattern demonstrates how much vibrational and thermal 
measurement is dominant in predictive maintenance of rotating 
machinery and industrial motors - a common practice in 
engineering. 

Every sensor was independently streaming data, which was 
stored in a local ring buffer on the edge device, where it was split 
into overlapping fixed-length segments. A rolling mean and 
standard deviation over the last 24 hours was calculated and 
used to normalize each segment. Additional low pass filtering 
was done to reduce the transient noise of the bursty flow and 
vibration data before sending the windows to the SSL encoder. 

 

Figure 5: Sensor Data Modality Distribution 

 

All features of the complete dataset are compiled in Table 4, 
which contains a description of each type of sensor, its sampling 
period, the duration of the data window for SSL pretext training, 
and the degree of provided description for the downstream 
evaluation. Unlike the 1Hz samples of temperature that used 60 
sample windows, 100Hz windows of vibration data were 1024 
samples. For the humidity and pressure data, there was the least 
amount of annotations available due to the manual labelling 
being performed inconsistently and having complex thresholds. 

 

Table 4: Dataset Specifications and Sampling Frequencies 

Sensor Type Sampling Frequency Data Window Size Annotation Availability 

Vibration 100 Hz 1024 samples Low 

Temperature 1 Hz 60 samples Moderate 

Pressure 10 Hz 300 samples Low 

Flow 5 Hz 150 samples Low 

Humidity 0.5 Hz 30 samples Rare 
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C. Training and Inference Constraints 

One of the main difficulties when using SSL on edge devices 
is the trade-off between learning accuracy and resources spent. 
In our study, we sought to test the feasibility of on-device 
learning by implementing two versions of the SSL framework 
in all edge platforms: Variant A, which used temporal order 
prediction as its primary pretext task, and Variant B, which used 
masked reconstruction. Each variant was trained using online 
mini-batch updates for 20 epochs and was subjected to 
immediate inference following the epoch for each novel batch 
received. 

For assessing on-device training's feasibility, the per ss l ss v 
a n t graph displays the time on-device for training during one 
epoch. The observational data revealed spotted faster closeout 
times at almost all epochs, fluctuating below 6 seconds toward 
the upper limit for decently constructed A. B, on the other hand, 
persistently lagged on all values due to increased computational 
costs of the more sophisticated masking reconstruction tasks. 
The gap widened with greater data complexity and model 
dimensionality increases, most particularly on less capable units 
like Edge-A1. These outcomes highlight the necessity for an 
appropriate choice of pretext task in relation to the deployment 
limitations and latency objectives. 

 

 

Figure 6: On-Device Training Time Across SSL Variants 

 

In spite of the stringent memory and computation limits, all 
the devices completed training within the 30 second inference 
window. This was checked for and verified during the testing 
process and confirms that our design for SSL is feasible. Power 
consumption was monitored with inline sensors, which 
provided readings for all configurations, and this remained 
below 5 watts. Thus, even in battery-operated or passive cooled 
configurations, the devices could sustain SSL without 
overheating or compromising the system's integrity. 

  

D. Evaluation Metrics and Ground Truth Alignment 

Evaluating and monitoring the performance of models 
trained with SSL poses some challenges, especially when 
markable data is limited and not available consistently. In this 
analysis, we employed a two phase evaluation stratified 
method. The first phase of system evaluation, involved intrinsic 
SSL evaluation metrics, specific for embedding alignment loss, 
reconstruction loss, contrastive loss, and similarity metrics. 
These metrics were used throughout the training phase to check 
if convergence was achieved and make necessary 
hyperparameter changes. The second phase involve subsequent 
performance metrics for the extrinsic classification, F1 Score, 
and anomaly detection AUC which were applied to the held 
back labelled data for each sensor modality. 

For the curating labels needed for ground truth evaluation, we 
either adopted them from available datasets or created them 
manually using domain expert knowledge for the smaller sample 
test portions. To ensure equity among all devices, every single 
model was assessed on the same test split and could only use 
self-supervision features. The initial evaluation phase did not 
involve any form of tuning, but other experiments with tuned 
heads were done and are discussed in Section 5. 

This setup worked well because of the assumption that the 
SSL model was capable of learning representations that would 
generalize effectively across time, sensor types, and operational 
conditions. In this aspect, results verified that at the edge with 
limited data, SSL could perform meaningfully and out of the 
box. The same, however, does not apply to models that were 
supervised and initialized or trained on smaller labelled sets. 

  

V. RESULTS AND PERFORMANCE ANALYSIS 

A. Embedding Quality and Downstream Task Accuracy 

One of the noted objectives of the implemented self-
supervised learning (SSL) framework has focused on producing 
high-quality embeddings that can easily support classification 
tasks with little labelled data. To test this, the embeddings from 
SSL encoders were passed onto a shallow classification head 
that was fine-tuned on very small portions of labelled sensor 
data. The resulting performance of the classification was 
evaluated in terms of F1 score and accuracy for different edge 
devices. 

The results of the study indicate that the performance of the 
SSL embeddings consistently surpassed the randomly initialized 
models and were quite proficient compared to the fully 
supervised models utilizing larger labelled datasets. In 
particular, the models on the high performance Edge-C3 device 
F1 score was 0.87, followed by Edge-B2, and Edge-A1 
performing at 0.82, and 0.76, respectively. These values indicate 
the increasing representational capacity and model complexity 
available from the hardware. 

To demonstrate the trade-off between classification 
performance and inference latency, Figure 7 depicts the 
relationship between F1 score and inference latency from the 
three edge devices in the study. Edge-C3 had the highest 
accuracy, but also had the lowest numeric inference latency of 
approximately 50 ms. On the other hand, lower powered Edge-
A1 had a latency of 120 ms, yet still achieved a considerable F1 
score which confirms the adaptability of the framework across 
edge tiers. 

 

 

Figure 7: F1 Score vs Inference Latency Across Edge Models 
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B. Inference Latency and Power Consumption Trade-offs 

Edge inference latency is one of the most important 
operational metrics for real-time applications needing some 
form of fault detection, process control, or early warning. To 
measure system responsiveness, we placed the system under 
realistic workloads and measured on-device inference latency, 
firstly across different model sizes, and then with varying 
sensor configurations. Each model received and stored data in 
predefined windows (per sensor). Latency was computed as an 
average time from window completion to class prediction. 

All edge devices remained within the pre-defined 150 
milliseconds threshold for latency, verifying the framework's 
applicability for live edge deployment. Due to GPU 
acceleration and higher memory bandwidth, Edge-C3 had the 
fastest inference time. Edge-B2 was more balanced, while 
Edge-A1 was still useful, although slower, for applications 
which don’t need ultra-low-latency. 

Power consumption was tracked simultaneously with inline 
sensors. On Edge-C3, the SSL framework consumed 3.8 watts, 
2.6 watts on Edge-B2, and 1.9 watts on Edge A1 during active 
inference. These results show that even with lower end devices, 
SSL can function within reasonable energy budgets which 
paves way for scalable, energy-efficient edge intelligence. 

Figure 8 shows the results of further analysis of classification 
performance across platforms that was captured during the fine-
tuning stage of each model. Edge-C3 was able to achieve 91% 
classification accuracy followed by Edge-B2 and Edge-A1 
scoring 85% and 78% respectively. Those results strengthen the 
fact that embedding quality and task execution scale with 
hardware capability but even the most resource constrained 
device can produce satisfactory outcomes when utilizing the 
proposed SSL model. 

 

 

Figure 8: Classification Accuracy of Fine-Tuned Models on 
Each Edge Device 

  

C. Model Transferability Across Devices 

The self-supervised paradigm offers yet another significant 
benefit, which is the ability to reuse learned representations for 
different tasks and platforms. To evaluate model transferability, 
a scenario in which encoder weights previously trained on one 
device were sent to a different device with distinct sensor 
conditions was tested. The device was then evaluated with only 
a small quantity of labelled samples necessary for fine-tuning. 
This experiment was designed to capture. 

Results confirmed that SSL embeddings were highly 
transferable. Models trained on Edge-C3 and transferred to 
Edge-A1 had fine-tuned accuracy of greater than 92% after 

using 5% labelled data. Similarly, some embeddings trained on 
Edge-B2 did well on Edge-C3, but there was some degradation 
when transferring from low-variability environments to high-
variability environments because of calibration differences in 
the sensors. These findings support the feasibility of centralized 
pre-training followed by lightweight edge adaptation. This 
approach allows organizations to bootstrap intelligence into 
edge environments with minimal cost and overhead. 
Additionally, it allows incremental improvement cycles where 
edge devices improve their models. 

  

D. Failure Cases and Model Drift under Real-World Noise 

Some failure cases were noted while evaluating the 
framework, and they showed fairly strong performance. These 
failures were classified based on their origins: sensor drift, 
packet drop, and ambient noise. Sensor drift was described as a 
change over time in the baseline readings due to either 
calibration or aging of the hardware of the instruments. Packet 
drop occurred as a result of a poor wireless link between the 
sensors and the edge devices. Ambient noise originated from the 
changes in temperature, humidity, or the degree of vibration that 
were not trained for, but were captured during the training 
phases. 

Figure 9 illustrates the error distribution resulting from these 
causes. It can be observed that sensor drift contributed to 40% 
of the errors while packet drop and Ambient noise contributed 
30% of the errors. These observations demonstrate the 
importance of the development of constant adaptation processes 
in relation to the deployment of systems over longer periods of 
time. 

 

Figure 9: Error Distribution by Failure Cause 

 

To mitigate these challenges, we suggest several 
modifications, which include anomaly detection based on rules 
of adaptive logic, online modification of the SSL architecture, 
and the implementation of “lightweight” calibration procedures 
which would turn on the suitable model during non-working 
hours. Moreover, the use of ensemble techniques or redundancy 
of the sensors may also alleviate the effect of single, point 
failures. 

  

VI. DISCUSSION 

A. Scalability of SSL for Heterogeneous Industrial Networks 

The implementation of self-supervised learning (SSL) within 
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the Industrial Internet of Things (IIoT) systems brings an 
unmatched degree of scalability not available through 
conventional supervised and cloud-centric machine learning 
models. In actual implementation, industrial networks have a 
multitude of different kinds of sensors, different types of edge 
compute hardware, and dispersed data systems. The hybrid, 
label-deficient, and flexible form of SSL is particularly relevant 
in the case of such systems in which homogeneity is the 
exception rather than the norm. 

Such SSL framework is capable of horizontal scaling across 
edge devices without having to adhere to consistent data 
labelling policies. Each device can independently establish a 
robust internal representation of its local data environment 
using the sensor data's pretext tasks operational semantics. 
Furthermore, large scale deployment is possible because the 
architecture is compact and allows for localized training, thus 
avoiding the need for extensive overburdening of network 
bandwidth or central processing units. SSL provides a secure 
and efficient means of scaling a decentralized learning pipeline 
in environments with thousands of distributed endpoints, such 
as power plants, oil rigs and manufacturing units. 

The possible inclusion of federated extensions strengthens 
the case for scalable learning architectures. Although this paper 
has been centred on device-level training, future versions could 
aggregate SSL where embeddings or encoder weights are 
periodically shared for global model refinement. This approach 
would provide local customization while maintaining central 
consistency. 

  

B. Real-Time Usability in Predictive Maintenance and Fault 
Detection 

In the context of IIoT, edge intelligence has the highest use 
gaps in predictive maintenance and fault detection models 
because they return the most. These use cases need multi-
purpose, fast, and precise models regardless of equipment 
diversity. The effectiveness of the proposed SSL method in 
terms of latency and energy expenditure makes it suitable for 
these cases. 

Our findings indicate that even the lowest level edge devices 
are able to do real-time inference in the accepted latency range. 
More importantly, the SSL models were able to form 
representations of data that captured temporal degradation 
phenomena of the signals issued from the sensors, thus allowing 
for the detection of anomalies without the need for supervision. 
This ability makes it possible to mitigate downtime, control 
maintenance expenditure, and optimize reliability of the assets. 

Since SSL has no reliance on labels, it is much more capable 
of uncovering faults not taught during the training phase. This 
means that SSL is much more adaptable and less susceptible to 
degradation than models that are supervised, which can only 
identify known failure signatures. Additionally, the model’s 
Self-Supervised Learning architecture’s small form factor and 
low power consumption ensures it can be operational on an 
embedded system indefinitely without risking thermal 
throttling or energy reserve depletion—something which is 
critical for embedded predictive maintenance modules. 

  

C. Comparison with Supervised and Federated Learning 
Approaches 

As precise as supervised learning is in a lab setting, they tend 
to fail in an industrial space throttled by unlabelled data, 
annotation expenses, and variability in the environment of 
implementation. A model trained at a particular facility tends to 

performs poorly in another one because of minor variations in 
the equipment, surrounding environment, and the signal profile. 
Self-Supervised Learning solves this problem by not requiring 
any labelled data and directly training on the data distribution 
present in the field. 

Federal learning (FL) allows devices to learn together and 
maintain privacy. FL does, however, impose significant 
restrictions on communication, is very sensitive to the 
differences between devices, and depends on periodic 
synchronization with a central server. On the other hand, Slice-
able Self Learning (SSL) enables training on devices that are 
asynchronously and independently accessible, which is ideal for 
low connectivity decentralized industrial settings. When 
combined with federated fine-tuning, SSL could potentially 
enable devices to share knowledge while retaining autonomy on 
the device. 

In head to head comparisons with SL, our model did not only 
equal but surpassed the accuracy of supervised models which 
relied on limited labelled training, particularly in new 
conditioned environments. Compared to federated versions, 
SSL had greater energy efficiency and lower latency for 
inference, although in some pretext tasks there was a reduction 
in the rate of convergence. Overall, SSL is a more 
environmentally friendly and adaptable paradigm for learning in 
the real-world IIoT applications. 

  

D. Deployment Trade-offs: Battery Life vs Model Quality 

One of the challenges to consider in deploying machine 
learning at the edge has to do with the trade-off between 
accuracy of the model and the power consumption, particularly 
when dealing with battery-powered or temporally powered 
devices. While greater model complexity is more likely to 
perform well, it often requires more energy which may not be 
acceptable in remote deployments that last a long time. 

This trade-off is depicted in Figure 10, comparing accuracy 
retention with low power consumption in edge devices. As 
shown, accuracy retention improves with the increase in the 
provided power for computation, and reaches a peak of 88% at 
3.5 watts. Performance begins dropping significantly below 2 
watts, suggesting that ultra low-power configurations may 
necessitate model pruning, quantization, or even lowering the 
complexity of pretext tasks. 

 

 

Figure 10: Accuracy Retention vs Energy Usage in Low-
Power Edge Devices 

 

To address this, we present a tiered deployment strategy. 
Devices with more lenient energy caps, like those having 
industrial/solar powered sources, can utilize full-capacity SSL 
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models that incorporate advanced pretext tasks and multi-head 
classifiers. More restrictive devices can employ distilled or 
compressed versions, or may need to limit training to off-peak 
times when energy draw is not as crucial. In both cases, edge 
orchestration platforms can adjust resource allocation and 
initiate updates when necessary based on monitored metrics like 
model health, performance drift and energy status. 

The scope of these implications goes beyond model design. 
As we have noted, system-level co-optimization is essential, 
whereby the choice for hardware, firmware scheduling and the 
learning goals are coupled with operational and energy limits. 

  

VII. CONCLUSION AND FUTURE DIRECTIONS 

A. Summary of Key Contributions 

To the best of our knowledge, there has been no other self-
supervised learning (SSL) approach designed specifically for 
the implementation on the edge devices in Industrial Internet of 
Things (IIoT) environments. The system's architecture allows 
edge devices to autonomously derive informative 
representations from sensor data in the absence of human 
intervention by: (1) tackling label scarcity and (2) dealing with 
hardware heterogeneity and real-time constraints. The system 
achieved high accuracy, fast convergence, and low-cost 
inference for classification of industrial sensors including 
vibration, temperature, pressure, and flow sensors. Multiple 
edge platforms were tested and proved the learning 
performance and deployment feasibility provided by the 
proposed system. The edge devices further demonstrated strong 
generalization, transferability between devices, and resilience 
to noise, drift, and data loss. Overall, it has been shown that SSL 
could potentially be a practical approach to achieve scalable, 
adaptive, and feasible edge AI in mission-critical industrial 
systems. 

  

B. Design Guidelines for SSL on Edge Systems 

Through research and analysis, it is possible to identify a few 
strategies that would best expedite the process of obtaining and 
automating self-supervised learning (SSL) at the edge. First is 
the consideration of design modularity; the encoder, projection 
head, and pretext task modules need to be individually designed 
to allow the system to be adapted to different hardware 
limitations. Second, pretext tasks cannot be agnostic of the 
domain: what works for the vibration sensor may not work for 
the environmental sensor. Third, every step in the pipeline 
effort must consider energy balance, such as input windows, 
memory set, and lightweight encoders with fast inference rich- 
in representation. Lastly, there should be uncontrolled 
monitoring and on-device retargeting in system training for 
remote performance supervision and gradual infrastructure 
dependency reduction. Together, these principles are aimed at 
ensuring SSL functions, as planned, in the most difficult-to-
predict and poorly resourced field situations. 

  

C. Future Research in Cross-Device Self-Supervision and 
Continual Learning 

The current implementation showcases the effectiveness of 
self-supervised learning on individual edge devices. Future 
efforts will focus on collaborative and lifelong learning 
strategies aimed at improving system intelligence at scale. One 
transformative area for cross-device self-supervision is device 
collaboration within analogous operating contexts, where 
intermediate representations, pretext objectives, or encoder 
weights are exchanged. This approach could greatly improve 

the speed of convergence while maintaining privacy and 
reducing communication costs. Another important frontier is the 
application of edge artificial intelligence (AI) to support 
continual learning, which allows evolving industrial processes 
to be incorporated in edge models without experiencing 
catastrophic forgetting. The inclusion of memory-aware 
mechanisms, concept drift detection, and adaptive task 
weighting can meet this objective. The inclusion of explainable 
artificial intelligence (XAI) systems will facilitate field 
operators and engineers’ understanding of model behavior and 
the decisions taken by autonomous systems. SSL will be crucial 
in constructing intelligent, resilient, and self-evolving systems 
that autonomously function on the edge of the network as 
industrial edge computing advances further. 

 

REFERENCES 
 

[1] Gilchrist, Alasdair. Industry 4.0. Apress, 2016. 

[2] Lee, In, and Kyoochun Lee. "The Internet of Things (IoT): Applications, 
investments, and challenges for enterprises." Business horizons 58.4 
(2015): 431-440. 

[3] Satyanarayanan, Mahadev. "The emergence of edge computing." 
Computer 50.1 (2017): 30-39. 

[4] Abbas, Nasir, et al. "Mobile edge computing: A survey." IEEE Internet of 
Things Journal 5.1 (2017): 450-465. 

[5] Lane, Nicholas D., et al. "Deepx: A software accelerator for low-power 
deep learning inference on mobile devices." 2016 15th ACM/IEEE 
International Conference on Information Processing in Sensor Networks 
(IPSN). IEEE, 2016. 

[6] Pan, SJ—Yang. "Q.: A survey on transfer learning." IEEE Transactions 
on Knowledge and Data Engineering 22.10 (2010): 1345-1359. 

[7] Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking 
generalization." arXiv preprint arXiv:1611.03530 (2016). 

[8] Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." 
Proceedings of the IEEE 109.1 (2020): 43-76. 

[9] Khosla, Prannay, et al. "Supervised contrastive learning." Advances in 
neural information processing systems 33 (2020): 18661-18673. 

[10] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using 
shifted windows." Proceedings of the IEEE/CVF international conference 
on computer vision. 2021. 

[11] Chen, Ting, et al. "A simple framework for contrastive learning of visual 
representations." International conference on machine learning. PmLR, 
2020. 

[12] Wickstrøm, Kristoffer, et al. "Mixing up contrastive learning: Self-
supervised representation learning for time series." Pattern Recognition 
Letters 155 (2022): 54-61. 

[13] LeCun, Yann. "A path towards autonomous machine intelligence version 
0.9. 2, 2022-06-27." Open Review 62.1 (2022): 1-62. 

[14] Jing, Longlong, and Yingli Tian. "Self-supervised visual feature learning 
with deep neural networks: A survey." IEEE transactions on pattern 
analysis and machine intelligence 43.11 (2020): 4037-4058. 

[15] Chen, Ting, et al. "A simple framework for contrastive learning of visual 
representations." International conference on machine learning. PmLR, 
2020. 

[16] Liu, Xiao, et al. "Self-supervised learning: Generative or contrastive." 
IEEE transactions on knowledge and data engineering 35.1 (2021): 857-
876. 

[17] Premsankar, Gopika, Mario Di Francesco, and Tarik Taleb. "Edge 
computing for the Internet of Things: A case study." IEEE Internet of 
Things Journal 5.2 (2018): 1275-1284. 

[18] Ruff, Lukas, et al. "Deep one-class classification." International 
conference on machine learning. PMLR, 2018. 

 


