Journal of Intelligent Systems with Applications 2023; 6(1): 37-46

37

Self-Supervised Learning Architectures for Intelligent
Edge Devices in Industrial 10T

Endiistriyel IoT'de Akilli Kenar Cihazlar i¢in Kendi

Kendini Denetleyen Ogrenme Mimarileri

Ankita Sappa
College of Engineering, Wichita State University, United States
Email: ankita.sappa@gmail.com

Abstract—Industrial 10T (110T) systems consist of a myriad of
sensors that generate considerable amounts of data that must be
analyzed intelligently and in a timely fashion at the edge. The
primary challenges in deploying machine learning models on edge
devices are the limited computational power and the lack of
sufficient labeled data. This work tackles the problem of self-
supervised learning (SSL) on resource-constrained intelligent edge
devices, solving the problems of resource limitation and annotation
bottleneck. The architecture incorporates domain-specific pretext
tasks for industrial sensor modalities such as vibration, pressure,
and temperature to construct embedding features without
requiring human-labeled data. We deploy and evaluate the model
within a heterogeneous IloT testbed that consists of real-world
edge devices and measure performance based on embedding
quality, accuracy of downstream tasks, energy consumption, and
latency. The results show that the proposed approach outperforms
baseline supervised and semi-supervised federated learning
models in sparse label conditions while achieving near real-time
inference and low power consumption. This work assists in the
deployment of scalable self-supervised intelligence at the edge for
predictive maintenance, anomaly detection, and context-aware
automation in future industrial systems.

Keywords—Self-Supervised Learning, Industrial 10T, Edge
Intelligence, Embedded Al Systems.

Ozetce— Endiistriyel IoT (IIoT) sistemleri, ucta akillica ve
zamaninda analiz edilmesi gereken onemli miktarda veri iireten
sayisiz sensorden olusur. Makine 6grenimi modellerini u¢ aygitlara
dagitmanin temel zorluklari, simirh hesaplama giicii ve yeterli
etiketli verinin olmamasidir. Bu ¢alisma, kaynak kisitlamal akilli
uc¢ aygitlarda kendi kendini denetleyen 63renme (SSL) sorununu ele
alarak kaynak simirlamasi ve aciklama darbogazi sorunlarini ¢ozer.
Mimari, insan etiketli veriler gerektirmeden gémme ozelliklerini
Olusturmak icin titresim, basing ve sicaklik gibi endiistriyel sensor
modaliteleri i¢in alan-6zel bahane gorevlerini icerir. Modeli, gercek
diinya u¢ aygitlarindan olusan heterojen bir IloT test yataginda
dagitir ve degerlendiririz ve gomme Kkalitesine, asag akis
gorevlerinin dogruluguna, enerji tiiketimine ve gecikmeye gore
performansi olceriz. Sonuclar, énerilen yaklasimin seyrek etiket
kosullarinda temel denetlenen ve yar:1 denetlenen federasyon
ogrenme modellerinden daha iyi performans gosterdigini,
neredeyse gercek zamanh ¢ikarim ve diisiik giic tiiketimi
sagladiZim gostermektedir. Bu calisma, gelecekteki endiistriyel
sistemlerde 6ngoriicii bakim, anormallik tespiti ve baglam farkinda
otomasyon igin ucta Olgeklenebilir, kendi kendini denetleyen
zekanin dagitimina yardimei olur.

Anahtar Kelimeler—Kendi Kendini Denetleyen Ogrenme,
Endustriyel 10T, U¢ Zeka, GomUlu Yapay Zeka Sistemleri.

Journal of Intelligent Systems with Applications 2023; 6(1): 37-46

. INTRODUCTION
A. Rise of Edge Intelligence in Industrial 10T

The modern world has witnessed the rapid evolution of the
Industrial Internet of Things (11oT), which has transformed the
methods and techniques of data collection, processing, and
action triggering. Industrial systems are increasingly
augmented by networks of intelligent sensors and embedded
devices, together forming edge computing layers closest to the
data source [1]. These edge devices, which are installed on the
manufacturing floors, oil rigs, transportation hubs, and smart
energy grids, are responsible for real-time monitoring, anomaly
detection, condition-based maintenance, and autonomous
control [2]. The volume and velocity of data generated in these
environments require processing to be done almost
instantaneously as the data inflow is too high, which renders
cloud-only frameworks impractical for time-sensitive and
crucial operations [3].

To respond to the intelligent automation shift, industries have
begun incorporating Al features into edge devices to minimize
the dependency on centralized computing. This increase in
automation at the edge is motivated by multiple drivers: the
need for ultra-low latency, the ability to function in the absence
of constant connectivity, and the growing importance of privacy
and security [4]. Reaching that level of intelligence, however,
requires machine learning models that are not only efficient but
also capable of learning and adapting without human
intervention in a constrained resource setting [5].

B. Limitations of Supervised Learning in Resource-

Constrained Environments

Though supervised learning biases offer an effective
technique to learn concepts from data, the amount and quality
of labelled data required is often suboptimal at the industrial
edge [6]. Unlike basic annotation procedures, real-time data
labelling of sensor data in industrial settings is highly tedious
and difficult owing to the scale, variety, and perpetuity of data
streams [7]. Furthermore, there are numerous challenges
concerning the application of pre-trained supervised models on
edge resource constrained devices which include, but are not
limited to, low compute and memory resources, power
limitations, and model performance degradation over time due
to sensor drift and environmental changes.

Inflexibility in coping with diverse or rapidly changing
operating conditions is another problem with performance of
supervised models [8]. For instance, a model developed for one
production line could prove unsuccessful when transferred to an
analogy line with slightly altered machine settings. By
definition, edge devices need resource-frugal models that offer
flexibility and high-metrics but, more importantly, that can
achieve these goals with little human supervision. This creates
the need to shift from the traditional supervised models to the
more autonomous ones relying on machine learning techniques

[9].

38

C. Emergence
Applications

of Self-Supervised Learning for Edge

The self-supervised learning (SSL) approach has become
popular in the recent past, especially for natural language
processing (NLP) and computer vision (CV) [10]. SSL
approaches construct useful feature representations without
manually labelled data by automatically completing pre-defined
tasks that are aimed at capturing key aspects of the raw data[11].
In the context of Industrial Internet of Things (I10T), SSL can
leverage inherent correlations present in sensor signals (for
example, future measurement prediction, masked value
reconstruction, and cross-modal sensor value alignment) to
create powerful label efficient models that would be valuable in
classification, regression, and anomaly detection tasks [12].

Implementing SSL on the edge creates an exciting possibility
for developing small adaptive models that continuously learn
from operational data while maintaining low latency and
privacy. SSL enables smarter patterns to be detected and
meaningful decisions to be made without cloud processing. In
addition, there is evidence that SSL models are more robust to
generalization under shift and noise. These properties make
them suitable for harsh unpredictable industrial environments.

D. Objectives and Contributions of the Study

This research aims to develop, deploy, and assess a self-
supervised learning framework for automation of self-annotated
learning tasks designed for industrial edge devices. It aims to
solve problems like computational performance, educational
data capture, and system design flexibility across different edge
integration devices. In particular, we design a modular SSL
architecture centered on lightweight encoders and projection
heads integrated with pretext tasks tailored for multi-sensor time
series data. The framework has been implemented on various
edge devices such as Raspberry Pis, NVIDIA Jetson boards, and
ARM Cortices, and tested with industrial data from vibration,
pressure, temperature, and flow sensors.

Self-supervised learning is a promising approach that could
be used to address the challenge of edge intelligence and
integration of Artificial Intelligence in Industrial Internet of
Things (110T) systems, autonomously adapting to changes in an
environment. This broad objective can be narrowed down using
a number of case studies, from understanding the implications
of system layout to propose an operational workflow for
efficient Al integration. Real life data confirm self-supervised
learning and provide a blueprint for industry stakeholders trying
to incorporate smart self-operating systems into their
infrastructure.

In order to provide context in relation to the deployment
limitations and operational requirements of edge devices and
cloud-based systems, their features are compared in Table 1.
This comparison demonstrates the gap for edge learning
architectures that take the industrial automation constraints into
consideration.

Table 1; Key Characteristics of Industrial Edge Devices vs Central Cloud Systems

Characteristic

Industrial Edge Devices

Central Cloud Systems

Compute Capability

Limited (Microcontrollers, SoCs)

High (CPUs/GPUs/TPUs)

Latency Sensitivity

High (sub-second response)

Low (batch processing accepted)

Connectivity Dependence

Intermittent or local-only

Always-on high-speed internet

Journal of Intelligent Systems with Applications 2023; 6(1): 37-46

39

Energy Constraints

Critical (battery/PoE-powered)

Less critical (unlimited power)

Data Privacy Requirements

High (on-device inference preferred)

Moderate (centralized analytics)

Real-time Processing

Mandatory for local automation

Optional depending on use case

Model Update Frequency

Low due to bandwidth limits

High (frequent retraining supported)

The data presented in the table strengthens the claim that
edge environments cannot rely on machine learning models
constructed for the cloud. Rather, fundamental constraints of
data, connectivity, computing resources, and environment must
be incorporated in order to create true edge solutions.

Il. LITERATURE REVIEW AND MOTIVATION
A. Overview of Self-Supervised Learning Principles

Machine learning is undergoing a paradigm shift as self-
supervised learning (SSL) is sometimes termed the
‘unsupervised friend’, since it exists somewhere between
supervised and unsupervised learning [13]. SSL differs from
traditional supervised learning because it does not rely on
labelled data. Instead, SSL models generate supervision from
the data itself by utilizing pretext tasks [14]. These pretext tasks
attempt to predict some parts of the input with the goal of
revealing hidden patterns, for example: If a specific value is
missing, if it occurs out of sequence in time, or if it is located
out of context. The captured representation is useful in a wide
range of tasks, including classification, anomaly detection, and
control, and can be further improved by a small amount of
labelled data.

The strength of self-supervised learning lies within its
versatility. In computer vison, methods like image inpainting,
rotation prediction, or contrastive learning have worked
exceptionally well in cases where the annotated datasets are
limited [15]. In the realm of natural language processing, BERT
and GPT models use masked language modelling or next word
prediction to train, constructing linguistic representations that
span numerous national language processing tasks. Applying
this reasoning to Self-supervised learning (SSL) in Industrial
10T (110T) environments is logical because there is an extremely
limited supply of labelled sensor data and system variability is
high [16]. With SSL, learning can be accomplished without
manual intervention while contextual intelligence is captured
from raw signals.

B. Edge Computing Constraints in Industrial 10T

With the increasing need for real time processing and
autonomy, combined with the need for less dependence on the
cloud, edge computing has emerged as one of the bases of IloT
architecture. Edge devices are less powerful compared to cloud
systems which have abundant computing and storage

capabilities. Edge devices, including microcontrollers and
embedded processors, operate at low power budgets, minimal
RAM and CPU power, and highly unpredictable network
availability. Throughout network outages, these devices need to
be able to sustain local inferences, as well as fast and accurate
operations [17].

Resource allocation on such devices is an exercise in tightrope
walking. Figure 1 demonstrates the resource utilization split for
compute, storage, and energy for the edge deployment testbed.
Effort spent on compute tasks is 40% while storage and energy
are each 30% of the device operational burden. This equilibrium
underlines the need to create ultra-lightweight and ultra-low
power efficient models, particularly on devices that are battery
operated or charged on a trickle basis.

Energy

Compute 30.0%

40.0%

30.0%

Storage

Figure 1: Resource Utilization Breakdown on Edge Devices

Alongside, Table 2 gives the specifications of a sample of
three edge devices from this study Edge-Al (ARM Cortex-
A53), Edge-B2 (Intel Atom x5-Z8350), Edge-C3 (NVIDIA
Jetson Nano). Each device has a different set of compute
capabilities, memory, and sensor integration capabilities which
provides a realistic picture of the diversity that needs to be
addressed in I1oT deployment. These platforms were selected to
validate the generalizability of the proposed SSL architecture to
different hardware restrictions.

Table 2: Edge Device Profiles Used in the Study

Device ID CPU RAM Sensor Type Network Interface
Edge-Al ARM Cortex-A53 512MB | Vibration, Temp WiFi, BLE
Edge-B2 | Intel Atom x5-Z8350 2GB Pressure, Flow Ethernet, 4G
Edge-C3 | NVIDIA Jetson Nano 4GB All Modalities WiFi, Ethernet

Journal of Intelligent Systems with Applications 2023; 6(1): 37-46

C. Motivation for SSL at the Network Edge

The main reason for employing self-supervised learning at
the edge is to solve the problem of limited labels and scarce
available computing resources. In industrial contexts, the cost
associated with data labelling is extremely high.
Contextualization of sensor data is absent, expert annotation is
tedious and time-consuming, and the semantics of real world
degradation, abnormalities and patterns irrespective of complex
is situational [18]. Figure 2 shows the relative proportions of
labelled data in some common 10T scenarios. For example, on
average only 10 percent of predictive maintenance datasets are
complete with ground-truth failure labels, but as much as 50
percent of asset tracking datasets are complete due to less
sophisticated context alignment.

50+
40
30t

20F

Percentage of Labeled Data (%)

Figure 2: Distribution of Label Availability Across Industrial
10T Use Cases

This labelled data scarcity makes it nearly impossible to train
and deploy dependable supervised models. SSL removes this
restriction by allowing for learning from raw, unmarked time-
series data, shifting the needs from human-annotated datasets to
on device learning. In addition, devices with SSL constructions
have been shown to be more resilient to noise and more
responsive to gradual changes in the signal environment, which
is crucial in rotated machinery, pipelines, or manufacturing
lines.

Also, it is important to note that the self supervised
representation learning (SSL) approach can be localized,
meaning that each edge device is capable of tailoring its learned
representation to his or her own data distribution. This
capability adds value by improving accuracy and reducing false
alarms. This feature is helpful in heterogeneous sensor
environments where there is a low level of generalizability of
the data collected from one machine to others.

D. Challenges in Industrial-Scale Implementation

Although promising, the use of SSL on edge devices in
industrial settings comes with a number of practical limitations.
The first being that model size and compute demand often need
to be constrained to very strict margins. Most SSL frameworks,
like SIMCLR or BYOL, are optimized for large GPU clusters
and come with extensive augmentation pipelines that are not
possible on embedded platforms. Therefore, there is the added
challenge of needing to design newer architectures and
compression methods, specifically for edge devices.

The second limitation is that the design of pretext tasks for

40

time-series sensor data is non-trivial. Unlike text or images,
sensors do not have a spatial structure, and data from a sensor
can come from multiple sensory modalities. There is a need to
take precautions to ensure that the SSL tasks (temporal
reordering, context prediction, masked reconstruction) capture
meaningful dependencies with minimal addition of overhead or
data leakage. The selected tasks need to be based on the physical
behaviour of the sensors and the anticipated patterns from the
surrounding environment.

Third, the speed of performance imposes constraints on the
depth and latency of inference models. In automated industry,
the time required to recognize a problem or check in on machine
health can mean unsafe conditions or decreased production. An
SSL model must therefore be designed to achieve not only high
accuracy, but also fast low power processing, especially during
offline or weak signal periods.

Finally, the need for consistency and security across devices
presents new challenges for deployment. Since edge devices
perform local learning, there is a chance of divergence or
concept drift if the devices are working under different regimes.
Maintaining stable and uniform embeddings throughout the
network while enabling privacy-preserving on-device learning
remains an unsolved problem.

I11. PROPOSED SSL ARCHITECTURE AND PRETEXT TASK DESIGN
A. Self-Supervised Encoder and Projection Head Structure

We have designed the self-supervised learning (SSL)
modality to mitigate the limitations and support the
requirements of smart edge devices functioning within
Industrial Internet of Things (I110T) ecosystems. The architecture
is built around a temporal encoder and a projection head which
processes multi-sensor time series data of different modalities
like vibration, temperature, and pressure. The encoder retrieves
temporal dependencies from raw sensor data through
lightweight 1D Convolutional Neural Networks (CNNs) that
operate on sliding windows. These features are then transferred
to a projection head which is a compact multi-layer perceptron
(MLP) that transforms the features into a latent embedding space
where contrastive or predictive losses are computed.

The division of labour between the encoder and projector is
crucial in making operation at the edge efficient in terms of time.
While the encoder captures salient local features, the projection
head semantically compresses them for downstream
applications. We implemented this architecture in several edge
devices in our study. Edge Al and Edge C3, as shown in Figure
3, both demonstrated reliable convergence with respect to
training epochs after twenty repetitions, with the contrastive loss
improving steadily in each round. Because of the more complex
sensor data and bigger model size, Edge C3's convergence rate
was somewhat reduced, however, it reached a lower total loss,
implying stronger final embeddings.

Journal of Intelligent Systems with Applications 2023; 6(1): 37-46

\ Edge-Al Encoder
—=— Edge-C3 Encoder

0.8 A

0.6

0.4

Contrastive Loss

02 RN

0.0

25 5.0 7.5 10.0 125 15.0 175 200
Epoch

Figure 3: Embedding Convergence over Training Epochs

B. Selection of Pretext Tasks for Industrial Sensor Data

Pretext tasks are of central importance in SSL, for the
accompanying design determines the supervisory signal the
model learns from. For example, in SSL for images, one could
use intuitive pretext tasks such as rotation prediction or
cropping. In contrast, time-series data is far more intricate and
necessitates domain-specific tasks that correspond with the
nature of industrial sensors. Under this framework, we
incorporated three principal pretext strategies: masked
prediction of sensor values, verification of the temporal order,
and forecasting based on a temporal window. These tasks were
designed to help the MP recognitive temporal dynamics, cross-
channel dependencies, and contextual awareness in the absence
of labelled data.

The effectiveness of a pretext task is influenced by sensor-
type variability, which in this case is ascribed to the presence of
vibration and temperature data which have such strong
autocorrelation features that they can easily be predicted. On
the other hand, pressure and flow rate sensors are more prone
to external forces that can be applied in a stepwise fashion and
necessitate the attention of the model to be on pattern
recognition and tolerant anomaly representation rather than
employing ordinary ANNNs. The effectiveness of
accomplishing these tasks is presented in Figure 4, where
pretext task accuracy by sensor type is displayed. Successful
achievement peak of vibration data was 86%, followed by
pressure data at 82%, with temperature data trailing at 78%.
Humidity data performed the worst because it changes so
infrequently and has a low signal-to-noise ratio.

90

Success Rate (%)
~ ~ 0 w
S G S o]

@
«

Vibration

Temperature Pressure Flow

Humidity

Figure 4: Pretext Task Success Rate Across Sensor Types

C. Latency-Aware Embedding Optimization

Any intelligent system's viability in real-life applications is

41

evaluated by the overall latency in industrial settings. Timely
and correct inference is vital in the execution of anomaly
detection, system control, and early warning mechanisms. The
SSL architecture solves this in an agnostic way with the
inclusion of latency-aware optimization at the encoder and
projection head levels by applying pruning redundant filters. In
this case, the convolution stride has to be decreased and the
functions activated after training have to be quantized in order
to enhance throughput speeds.

Moreover, the feature space dimensionality was configured to
guarantee that the learned features were compact enough to
facilitate downstream classification and regression with minimal
memory or compute costs. The embedding dimension was set
either to 64 or 128 while the cosine similarity or L2 norm was
computed based on the pretext context. The architecture also
contains a progressively updated embedding buffer which
enables the construction of positive and negative samples for
contrastive learning without loading entire datasets into
memory. This mechanism was instrumental in achieving stable
learning during the severe memory constraints of devices like
Edge-Al.

The deployment of the model and the measurement of latency
showed that all the variations of the SSL models maintained
inference latency of under 100 ms across the tested edge
platforms. The Edge-C3 gave the fastest response owing to its
optimized GPU core. Therefore, the real-time boundaries for on-
device prediction were achieved allowing for the deployment in
industrial control loops that are time-critical.

D. Architecture Adaptability Across Edge Form Factors

Adjustability over multi-hardware environments is important
for any industrial Al solution, particularly for heterogeneous
10T ecosystems. The SSL framework was evaluated with three
different edge profiles: low power ARM Cortex-A53
microcontroller Edge-Al, mid-level x86 Edge-B2, and GPU
accelerated Jetson Nano Edge-C3. Each of these deployments
came with slight adjustments for the amount of pretext, model
size, training configuration and complexity of the process. All
architecture design included modular frameworks to support
stackable extensions, meaning projection head or optimizer
components could be changed depending on the amount of
resources available for hardware.

To enable greater portability across devices, model weights
were distilled through lightweight teacher student training
strategies. Compact student models on Edge-Al could be
initialized using larger teacher models trained on Edge-C3 or
cloud to lower the cold-start representational time while
preserving quality. This enabled all devices to continue learning
on-device with local unlabeled data while being loosely coupled
to the other devices in the rest of the network.

Table 3 illustrates the elements of the SSL framework
alongside their respective functionalities. Each module is
designed to be modular with separate functions for pre-
processing, representation learning, and contrastive evaluation.
This modularity not only guarantees performance efficiency but
also accommodates enhanced features in the future such as
online adaptation, integration of federated learning, or
specialized task training.

Table 3: Summary of SSL Model Components and Functions

Component Function

Sensor Input Window | Aggregates multi-sensor time series into

fixed-size windows.

Journal of Intelligent Systems with Applications 2023; 6(1): 37-46

Temporal Encoder | Extracts local temporal features from raw
(1D CNN) sensor signals.

Projection Head | Maps feature embeddings to latent space for
(MLP) contrastive learning.

Pretext Task Module Implements masking,

prediction tasks.

reordering, and

Embedding Buffer Stores positive and negative pairs for

contrastive updates.

Contrastive Loss
Engine

Calculates similarity loss between anchor
and target embeddings.

On-Device Optimizer | Applies gradient updates within compute

and memory constraints.

The proposed architecture for SSL is designed compactly,
and flexibly while efficiently learning, making it suitable for the
various edge devices found in industrial environments.

IV. EXPERIMENTAL SETUP AND DEPLOYMENT ENVIRONMENT
A. Industrial Edge Testbed Configuration

The design for the experiments sought to achieve realistic
I1OT deployment scenarios. The edge testbed included a
heterogeneous collection of single board and embedded
computers such as ARM Cortex A53 microcontrollers, Intel
Atom boards, NVIDIA Jetson Nano boards with GPUs, and
others. These edge platforms were placed in laboratory test beds
designed to simulate the deployment of sensors across a number
of industrial applications like rotating machinery, fluid
movement pipelines, and environmental regulation systems.
Each device had a local storage for buffering, minimal cooling
system, and software for edge inference loaded through
containerized modules of semi-supervised SSL.

To maintain pertinence to a production-grade environment,
all devices were allocated in a network-isolated mode during
testing. This meant that neither cloud nor centralized compute
were used for training or inference. Furthermore, the models
were also constrained to operate under defined CPU frequency
caps and RAM budgets in order to throttle them and simulate
industry-representative compute, power, and RAM limits. Such
constraints mimicked the actual scenarios many powered
battery or ruggedized edge deployments encounter where
compute cycles and energy expenditure need to be highly
controlled.

B. Sensor Data Collection and Preprocessing

A comprehensive set of sensor modalities are integrated into

42

the testbed as is typical of operational data in an IIOT
environment. These are vibration, pressure, temperature, flow
and humidity sensors, all of which were set up with appropriate
sampling rates and designed preprocessing pipelines signals.
According to Figure 5, the largest observed share of collected
data relative to sensors was achieved by vibration sensors at
30%, followed by temperature sensors at 25%, pressure sensors
at 20%, flow sensors at 15%, and humidity sensors at 10%. The
pattern demonstrates how much vibrational and thermal
measurement is dominant in predictive maintenance of rotating
machinery and industrial motors - a common practice in
engineering.

Every sensor was independently streaming data, which was
stored in a local ring buffer on the edge device, where it was split
into overlapping fixed-length segments. A rolling mean and
standard deviation over the last 24 hours was calculated and
used to normalize each segment. Additional low pass filtering
was done to reduce the transient noise of the bursty flow and
vibration data before sending the windows to the SSL encoder.

Flow

Humidity

15.0%
10.0% ’

Pressure
20.0%

30.0%
Vibration

25.0%

Temperature

Figure 5: Sensor Data Modality Distribution

All features of the complete dataset are compiled in Table 4,
which contains a description of each type of sensor, its sampling
period, the duration of the data window for SSL pretext training,
and the degree of provided description for the downstream
evaluation. Unlike the 1Hz samples of temperature that used 60
sample windows, 100Hz windows of vibration data were 1024
samples. For the humidity and pressure data, there was the least
amount of annotations available due to the manual labelling
being performed inconsistently and having complex thresholds.

Table 4: Dataset Specifications and Sampling Frequencies

Sensor Type | Sampling Frequency | Data Window Size | Annotation Availability
Vibration 100 Hz 1024 samples Low
Temperature 1 Hz 60 samples Moderate
Pressure 10 Hz 300 samples Low
Flow 5 Hz 150 samples Low
Humidity 0.5 Hz 30 samples Rare

Journal of Intelligent Systems with Applications 2023; 6(1): 37-46
C. Training and Inference Constraints

One of the main difficulties when using SSL on edge devices
is the trade-off between learning accuracy and resources spent.
In our study, we sought to test the feasibility of on-device
learning by implementing two versions of the SSL framework
in all edge platforms: Variant A, which used temporal order
prediction as its primary pretext task, and Variant B, which used
masked reconstruction. Each variant was trained using online
mini-batch updates for 20 epochs and was subjected to
immediate inference following the epoch for each novel batch
received.

For assessing on-device training's feasibility, the per ss 1 ss v
a n t graph displays the time on-device for training during one
epoch. The observational data revealed spotted faster closeout
times at almost all epochs, fluctuating below 6 seconds toward
the upper limit for decently constructed A. B, on the other hand,
persistently lagged on all values due to increased computational
costs of the more sophisticated masking reconstruction tasks.
The gap widened with greater data complexity and model
dimensionality increases, most particularly on less capable units
like Edge-Al. These outcomes highlight the necessity for an
appropriate choice of pretext task in relation to the deployment
limitations and latency objectives.

SSLVariant A
SSL-Variant B
6.0

5.8

5.6

Training Time (s)

54

5.2

2.5 5.0 15 10.0 125 15.0 175 20.0
Epoch

Figure 6: On-Device Training Time Across SSL Variants

In spite of the stringent memory and computation limits, all
the devices completed training within the 30 second inference
window. This was checked for and verified during the testing
process and confirms that our design for SSL is feasible. Power
consumption was monitored with inline sensors, which
provided readings for all configurations, and this remained
below 5 watts. Thus, even in battery-operated or passive cooled
configurations, the devices could sustain SSL without
overheating or compromising the system's integrity.

D. Evaluation Metrics and Ground Truth Alignment

Evaluating and monitoring the performance of models
trained with SSL poses some challenges, especially when
markable data is limited and not available consistently. In this
analysis, we employed a two phase evaluation stratified
method. The first phase of system evaluation, involved intrinsic
SSL evaluation metrics, specific for embedding alignment loss,
reconstruction loss, contrastive loss, and similarity metrics.
These metrics were used throughout the training phase to check
if convergence was achieved and make necessary
hyperparameter changes. The second phase involve subsequent
performance metrics for the extrinsic classification, F1 Score,
and anomaly detection AUC which were applied to the held
back labelled data for each sensor modality.

43

For the curating labels needed for ground truth evaluation, we
either adopted them from available datasets or created them
manually using domain expert knowledge for the smaller sample
test portions. To ensure equity among all devices, every single
model was assessed on the same test split and could only use
self-supervision features. The initial evaluation phase did not
involve any form of tuning, but other experiments with tuned
heads were done and are discussed in Section 5.

This setup worked well because of the assumption that the
SSL model was capable of learning representations that would
generalize effectively across time, sensor types, and operational
conditions. In this aspect, results verified that at the edge with
limited data, SSL could perform meaningfully and out of the
box. The same, however, does not apply to models that were
supervised and initialized or trained on smaller labelled sets.

V. RESULTS AND PERFORMANCE ANALYSIS
A. Embedding Quality and Downstream Task Accuracy

One of the noted objectives of the implemented self-
supervised learning (SSL) framework has focused on producing
high-quality embeddings that can easily support classification
tasks with little labelled data. To test this, the embeddings from
SSL encoders were passed onto a shallow classification head
that was fine-tuned on very small portions of labelled sensor
data. The resulting performance of the classification was
evaluated in terms of F1 score and accuracy for different edge
devices.

The results of the study indicate that the performance of the
SSL embeddings consistently surpassed the randomly initialized
models and were quite proficient compared to the fully
supervised models utilizing larger labelled datasets. In
particular, the models on the high performance Edge-C3 device
F1 score was 0.87, followed by Edge-B2, and Edge-Al
performing at 0.82, and 0.76, respectively. These values indicate
the increasing representational capacity and model complexity
available from the hardware.

To demonstrate the trade-off between classification
performance and inference latency, Figure 7 depicts the
relationship between F1 score and inference latency from the
three edge devices in the study. Edge-C3 had the highest
accuracy, but also had the lowest numeric inference latency of
approximately 50 ms. On the other hand, lower powered Edge-
Al had a latency of 120 ms, yet still achieved a considerable F1
score which confirms the adaptability of the framework across
edge tiers.

Edge-C3

086

0.84r

Edge-B2

o
@
8]

F1 Score

o
o
=]

0781

0.76 Edge-Al

50 60 70 80 90 100 110 120
Inference Latency (ms})

Figure 7: F1 Score vs Inference Latency Across Edge Models

Journal of Intelligent Systems with Applications 2023; 6(1): 37-46

B. Inference Latency and Power Consumption Trade-offs

Edge inference latency is one of the most important
operational metrics for real-time applications needing some
form of fault detection, process control, or early warning. To
measure system responsiveness, we placed the system under
realistic workloads and measured on-device inference latency,
firstly across different model sizes, and then with varying
sensor configurations. Each model received and stored data in
predefined windows (per sensor). Latency was computed as an
average time from window completion to class prediction.

All edge devices remained within the pre-defined 150
milliseconds threshold for latency, verifying the framework's
applicability for live edge deployment. Due to GPU
acceleration and higher memory bandwidth, Edge-C3 had the
fastest inference time. Edge-B2 was more balanced, while
Edge-Al was still useful, although slower, for applications
which don’t need ultra-low-latency.

Power consumption was tracked simultaneously with inline
sensors. On Edge-C3, the SSL framework consumed 3.8 watts,
2.6 watts on Edge-B2, and 1.9 watts on Edge Al during active
inference. These results show that even with lower end devices,
SSL can function within reasonable energy budgets which
paves way for scalable, energy-efficient edge intelligence.

Figure 8 shows the results of further analysis of classification
performance across platforms that was captured during the fine-
tuning stage of each model. Edge-C3 was able to achieve 91%
classification accuracy followed by Edge-B2 and Edge-Al
scoring 85% and 78% respectively. Those results strengthen the
fact that embedding quality and task execution scale with
hardware capability but even the most resource constrained
device can produce satisfactory outcomes when utilizing the
proposed SSL model.

100
951
90

851

801

Classification Accuracy (%)

757

0 Edge-C3

EdglefAl Edgé—BZ
Figure 8: Classification Accuracy of Fine-Tuned Models on

Each Edge Device

C. Model Transferability Across Devices

The self-supervised paradigm offers yet another significant
benefit, which is the ability to reuse learned representations for
different tasks and platforms. To evaluate model transferability,
a scenario in which encoder weights previously trained on one
device were sent to a different device with distinct sensor
conditions was tested. The device was then evaluated with only
a small quantity of labelled samples necessary for fine-tuning.
This experiment was designed to capture.

Results confirmed that SSL embeddings were highly
transferable. Models trained on Edge-C3 and transferred to
Edge-Al had fine-tuned accuracy of greater than 92% after

44

using 5% labelled data. Similarly, some embeddings trained on
Edge-B2 did well on Edge-C3, but there was some degradation
when transferring from low-variability environments to high-
variability environments because of calibration differences in
the sensors. These findings support the feasibility of centralized
pre-training followed by lightweight edge adaptation. This
approach allows organizations to bootstrap intelligence into
edge environments with minimal cost and overhead.
Additionally, it allows incremental improvement cycles where
edge devices improve their models.

D. Failure Cases and Model Drift under Real-World Noise

Some failure cases were noted while evaluating the
framework, and they showed fairly strong performance. These
failures were classified based on their origins: sensor drift,
packet drop, and ambient noise. Sensor drift was described as a
change over time in the baseline readings due to either
calibration or aging of the hardware of the instruments. Packet
drop occurred as a result of a poor wireless link between the
sensors and the edge devices. Ambient noise originated from the
changes in temperature, humidity, or the degree of vibration that
were not trained for, but were captured during the training
phases.

Figure 9 illustrates the error distribution resulting from these
causes. It can be observed that sensor drift contributed to 40%
of the errors while packet drop and Ambient noise contributed
30% of the errors. These observations demonstrate the
importance of the development of constant adaptation processes
in relation to the deployment of systems over longer periods of
time.

Environmental Noise

30.0%

30.0%
40.0%
Packet Loss

Sensor Drift

Figure 9: Error Distribution by Failure Cause

To mitigate these challenges, we suggest several
modifications, which include anomaly detection based on rules
of adaptive logic, online modification of the SSL architecture,
and the implementation of “lightweight” calibration procedures
which would turn on the suitable model during non-working
hours. Moreover, the use of ensemble techniques or redundancy
of the sensors may also alleviate the effect of single, point
failures.

V1. DISCUSSION
A. Scalability of SSL for Heterogeneous Industrial Networks

The implementation of self-supervised learning (SSL) within

Journal of Intelligent Systems with Applications 2023; 6(1): 37-46

the Industrial Internet of Things (I1oT) systems brings an
unmatched degree of scalability not available through
conventional supervised and cloud-centric machine learning
models. In actual implementation, industrial networks have a
multitude of different kinds of sensors, different types of edge
compute hardware, and dispersed data systems. The hybrid,
label-deficient, and flexible form of SSL is particularly relevant
in the case of such systems in which homogeneity is the
exception rather than the norm.

Such SSL framework is capable of horizontal scaling across
edge devices without having to adhere to consistent data
labelling policies. Each device can independently establish a
robust internal representation of its local data environment
using the sensor data's pretext tasks operational semantics.
Furthermore, large scale deployment is possible because the
architecture is compact and allows for localized training, thus
avoiding the need for extensive overburdening of network
bandwidth or central processing units. SSL provides a secure
and efficient means of scaling a decentralized learning pipeline
in environments with thousands of distributed endpoints, such
as power plants, oil rigs and manufacturing units.

The possible inclusion of federated extensions strengthens
the case for scalable learning architectures. Although this paper
has been centred on device-level training, future versions could
aggregate SSL where embeddings or encoder weights are
periodically shared for global model refinement. This approach
would provide local customization while maintaining central
consistency.

B. Real-Time Usability in Predictive Maintenance and Fault
Detection

In the context of 10T, edge intelligence has the highest use
gaps in predictive maintenance and fault detection models
because they return the most. These use cases need multi-
purpose, fast, and precise models regardless of equipment
diversity. The effectiveness of the proposed SSL method in
terms of latency and energy expenditure makes it suitable for
these cases.

Our findings indicate that even the lowest level edge devices
are able to do real-time inference in the accepted latency range.
More importantly, the SSL models were able to form
representations of data that captured temporal degradation
phenomena of the signals issued from the sensors, thus allowing
for the detection of anomalies without the need for supervision.
This ability makes it possible to mitigate downtime, control
maintenance expenditure, and optimize reliability of the assets.

Since SSL has no reliance on labels, it is much more capable
of uncovering faults not taught during the training phase. This
means that SSL is much more adaptable and less susceptible to
degradation than models that are supervised, which can only
identify known failure signatures. Additionally, the model’s
Self-Supervised Learning architecture’s small form factor and
low power consumption ensures it can be operational on an
embedded system indefinitely without risking thermal
throttling or energy reserve depletion—something which is
critical for embedded predictive maintenance modules.

C. Comparison with Supervised and Federated Learning
Approaches

As precise as supervised learning is in a lab setting, they tend
to fail in an industrial space throttled by unlabelled data,
annotation expenses, and variability in the environment of
implementation. A model trained at a particular facility tends to

45

performs poorly in another one because of minor variations in
the equipment, surrounding environment, and the signal profile.
Self-Supervised Learning solves this problem by not requiring
any labelled data and directly training on the data distribution
present in the field.

Federal learning (FL) allows devices to learn together and
maintain privacy. FL does, however, impose significant
restrictions on communication, is very sensitive to the
differences between devices, and depends on periodic
synchronization with a central server. On the other hand, Slice-
able Self Learning (SSL) enables training on devices that are
asynchronously and independently accessible, which is ideal for
low connectivity decentralized industrial settings. When
combined with federated fine-tuning, SSL could potentially
enable devices to share knowledge while retaining autonomy on
the device.

In head to head comparisons with SL, our model did not only
equal but surpassed the accuracy of supervised models which
relied on limited labelled training, particularly in new
conditioned environments. Compared to federated versions,
SSL had greater energy efficiency and lower latency for
inference, although in some pretext tasks there was a reduction
in the rate of convergence. Overall, SSL is a more
environmentally friendly and adaptable paradigm for learning in
the real-world 10T applications.

D. Deployment Trade-offs: Battery Life vs Model Quality

One of the challenges to consider in deploying machine
learning at the edge has to do with the trade-off between
accuracy of the model and the power consumption, particularly
when dealing with battery-powered or temporally powered
devices. While greater model complexity is more likely to
perform well, it often requires more energy which may not be
acceptable in remote deployments that last a long time.

This trade-off is depicted in Figure 10, comparing accuracy
retention with low power consumption in edge devices. As
shown, accuracy retention improves with the increase in the
provided power for computation, and reaches a peak of 88% at
3.5 watts. Performance begins dropping significantly below 2
watts, suggesting that ultra low-power configurations may
necessitate model pruning, quantization, or even lowering the
complexity of pretext tasks.

Accuracy Retention (%)
~l ~ @ o =] w
o ~ o s o ~
o v (=] w o w

~
r
o

~
e
=)

1.50 175 2.00 225 2.50 275 3.00 3.25 3.50
Energy Usage (Watts)

Figure 10: Accuracy Retention vs Energy Usage in Low-
Power Edge Devices

To address this, we present a tiered deployment strategy.
Devices with more lenient energy caps, like those having
industrial/solar powered sources, can utilize full-capacity SSL

Journal of Intelligent Systems with Applications 2023; 6(1): 37-46

models that incorporate advanced pretext tasks and multi-head
classifiers. More restrictive devices can employ distilled or
compressed versions, or may need to limit training to off-peak
times when energy draw is not as crucial. In both cases, edge
orchestration platforms can adjust resource allocation and
initiate updates when necessary based on monitored metrics like
model health, performance drift and energy status.

The scope of these implications goes beyond model design.
As we have noted, system-level co-optimization is essential,
whereby the choice for hardware, firmware scheduling and the
learning goals are coupled with operational and energy limits.

VII. CONCLUSION AND FUTURE DIRECTIONS
A. Summary of Key Contributions

To the best of our knowledge, there has been no other self-
supervised learning (SSL) approach designed specifically for
the implementation on the edge devices in Industrial Internet of
Things (110T) environments. The system's architecture allows
edge devices to autonomously derive informative
representations from sensor data in the absence of human
intervention by: (1) tackling label scarcity and (2) dealing with
hardware heterogeneity and real-time constraints. The system
achieved high accuracy, fast convergence, and low-cost
inference for classification of industrial sensors including
vibration, temperature, pressure, and flow sensors. Multiple
edge platforms were tested and proved the learning
performance and deployment feasibility provided by the
proposed system. The edge devices further demonstrated strong
generalization, transferability between devices, and resilience
to noise, drift, and data loss. Overall, it has been shown that SSL
could potentially be a practical approach to achieve scalable,
adaptive, and feasible edge Al in mission-critical industrial
systems.

B. Design Guidelines for SSL on Edge Systems

Through research and analysis, it is possible to identify a few
strategies that would best expedite the process of obtaining and
automating self-supervised learning (SSL) at the edge. First is
the consideration of design modularity; the encoder, projection
head, and pretext task modules need to be individually designed
to allow the system to be adapted to different hardware
limitations. Second, pretext tasks cannot be agnostic of the
domain: what works for the vibration sensor may not work for
the environmental sensor. Third, every step in the pipeline
effort must consider energy balance, such as input windows,
memory set, and lightweight encoders with fast inference rich-
in representation. Lastly, there should be uncontrolled
monitoring and on-device retargeting in system training for
remote performance supervision and gradual infrastructure
dependency reduction. Together, these principles are aimed at
ensuring SSL functions, as planned, in the most difficult-to-
predict and poorly resourced field situations.

C. Future Research in Cross-Device Self-Supervision and
Continual Learning

The current implementation showcases the effectiveness of
self-supervised learning on individual edge devices. Future
efforts will focus on collaborative and lifelong learning
strategies aimed at improving system intelligence at scale. One
transformative area for cross-device self-supervision is device
collaboration within analogous operating contexts, where
intermediate representations, pretext objectives, or encoder
weights are exchanged. This approach could greatly improve

46

the speed of convergence while maintaining privacy and
reducing communication costs. Another important frontier is the
application of edge artificial intelligence (Al) to support
continual learning, which allows evolving industrial processes
to be incorporated in edge models without experiencing
catastrophic forgetting. The inclusion of memory-aware
mechanisms, concept drift detection, and adaptive task
weighting can meet this objective. The inclusion of explainable
artificial intelligence (XAIl) systems will facilitate field
operators and engineers’ understanding of model behavior and
the decisions taken by autonomous systems. SSL will be crucial
in constructing intelligent, resilient, and self-evolving systems
that autonomously function on the edge of the network as
industrial edge computing advances further.

REFERENCES

[1] Gilchrist, Alasdair. Industry 4.0. Apress, 2016.

[2] Lee, In, and Kyoochun Lee. "The Internet of Things (loT): Applications,
investments, and challenges for enterprises." Business horizons 58.4
(2015): 431-440.

[3] Satyanarayanan, Mahadev. "The emergence of edge computing."
Computer 50.1 (2017): 30-39.

[4] Abbas, Nasir, et al. "Mobile edge computing: A survey." IEEE Internet of
Things Journal 5.1 (2017): 450-465.

[5] Lane, Nicholas D., et al. "Deepx: A software accelerator for low-power
deep learning inference on mobile devices." 2016 15th ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN). IEEE, 2016.

[6] Pan, Sl—Yang. "Q.: A survey on transfer learning." IEEE Transactions
on Knowledge and Data Engineering 22.10 (2010): 1345-1359.

[7] Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking
generalization." arXiv preprint arXiv:1611.03530 (2016).

[8] Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning."
Proceedings of the IEEE 109.1 (2020): 43-76.

[9] Khosla, Prannay, et al. "Supervised contrastive learning." Advances in
neural information processing systems 33 (2020): 18661-18673.

[10] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using
shifted windows." Proceedings of the IEEE/CVF international conference
on computer vision. 2021.

[11] Chen, Ting, et al. "A simple framework for contrastive learning of visual
representations.” International conference on machine learning. PmLR,
2020.

[12] Wickstrgm, Kristoffer, et al. "Mixing up contrastive learning: Self-
supervised representation learning for time series." Pattern Recognition
Letters 155 (2022): 54-61.

[13] LeCun, Yann. "A path towards autonomous machine intelligence version
0.9. 2, 2022-06-27." Open Review 62.1 (2022): 1-62.

[14] Jing, Longlong, and Yingli Tian. "Self-supervised visual feature learning
with deep neural networks: A survey." IEEE transactions on pattern
analysis and machine intelligence 43.11 (2020): 4037-4058.

[15] Chen, Ting, et al. "A simple framework for contrastive learning of visual
representations.” International conference on machine learning. PmLR,
2020.

[16] Liu, Xiao, et al. "Self-supervised learning: Generative or contrastive."
IEEE transactions on knowledge and data engineering 35.1 (2021): 857-
876.

[17] Premsankar, Gopika, Mario Di Francesco, and Tarik Taleb. “Edge
computing for the Internet of Things: A case study." IEEE Internet of
Things Journal 5.2 (2018): 1275-1284.

[18] Ruff, Lukas, et al. "Deep one-class classification." International
conference on machine learning. PMLR, 2018.

