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Abstract—Lung (Pulmonary) diseases such as Lung
Opacity and Viral Pneumonia continue to be major pub-
lic health concerns, contributing significantly to global
morbidity and mortality. Early and accurate diagnosis
is essential for effective treatment and better patient
outcomes. Chest X-ray imaging remains one of the
most accessible and cost-efficient tools for lung disease
screening; however, manual interpretation often depends
on expert radiologists and is susceptible to human error,
particularly in low-resource healthcare environments. To
overcome these limitations, this study proposes a deep
learning-based framework for automated lung disease
classification using chest X-ray images. A publicly avail-
able dataset from Mendeley Data was used, containing
normal and diseased lung images. Several convolutional
neural network (CNN) architectures, both custom and
pretrained, were evaluated to determine their perfor-
mance in automated lung disease classification. The
pretrained models—ResNet50, VGG19, ImageNet227,
MobileNetV3, DenseNet169, Xception, Inception, Nas-
NetMobile, and EfficientNetV2—were fine-tuned and
compared against a baseline CNN model. Among these,
DenseNet169 achieved the highest accuracy of 95.97%,
followed by EfficientNetV2 (94.81%) and MobileNetV3
(93.37%). Experimental results show that deep transfer
learning models outperform traditional CNNs, offering
significant potential for clinical diagnostic support.

Keywords—Lung disease, Deep Learning, CNN, Medi-
cal Imaging, Chest X-ray, Transfer Learning;

I. INTRODUCTION

Lung diseases, including pneumonia, Lung Opac-
ity and other respiratory abnormalities, are among
the leading causes of death worldwide. Early and
accurate diagnosis plays a vital role in improving
patient outcomes. Chest X-rays are one of the most
common diagnostic tools, but manual interpretation is
challenging and prone to inconsistencies.

Artificial Intelligence (AI) refers to the simulation
of human intelligence in machines that are designed
to think, learn, and make decisions like humans.
It enables computers to analyze vast amounts of
data, recognize complex patterns, and make accurate
predictions. AI is particularly important in modern
research and healthcare because it enhances efficiency,

reduces human error, and accelerates the discovery of
new insights. By integrating AI into medical diag-
nostics, researchers and clinicians can detect diseases
earlier, provide more accurate diagnoses, and improve
patient care through data-driven decision-making.

With the advancement of artificial intelligence
(AI), deep learning-based image classification has
emerged as a powerful solution for automating disease
detection. CNNs can automatically learn high-level
features from medical images without manual fea-
ture engineering. Pretrained models such as VGG19,
ResNet50, DenseNet, and EfficientNet trained on
large datasets like ImageNet can be fine-tuned to
specific medical datasets through transfer learning.

A. Distinctive Contributions

The key contributions of this study are as follows:
• Curated dataset: Comparison of ten deep

learning models using the same dataset and
experimental setup.

• Preprocessing and augmentation: Application
of the publicly available Mandal Lung Disease
Dataset for reproducible research.

• Model validation: Achieved up to 95.97%
accuracy using DenseNet169.

• Benchmark resource: Demonstrated that Mo-
bileNetV3 provides competitive accuracy with
lower computational cost.

• Practical relevance: Proposed framework
adaptable for integration into real-time diagnos-
tic or telemedicine systems.

II. RELATED WORK

Several studies have explored deep learning tech-
niques for lung disease detection using chest X-ray
(CXR) images, demonstrating remarkable advance-
ments in medical image analysis. Rajpurkar et al. [1]
(2017) introduced CheXNet, a 121-layer DenseNet
model trained on the ChestX-ray14 dataset, which
achieved radiologist-level performance in pneumonia
detection with an AUC score of 0.841, proving the
potential of deep learning in automating medical
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diagnosis. Kermany et al. [2] (2018) utilized trans-
fer learning on large-scale medical imaging datasets,
enabling their model to classify various diseases,
including pneumonia and retinal conditions, with over
90% accuracy, emphasizing the adaptability of pre-
trained models in medical applications. Tan and Le
[3] (2019) proposed EfficientNet, a family of convolu-
tional neural networks that balanced performance and
computational efficiency by scaling depth, width, and
resolution systematically; their model achieved state-
of-the-art accuracy on ImageNet with significantly
fewer parameters compared to previous architectures.
Narin and Pamuk [4] (2020) studied effect of different
batch size parameters on predicting of COVID19
cases. Apostolopoulos and Mpesiana [5] (2020) also
employed transfer learning using pretrained CNNs to
classify normal, pneumonia, and COVID-19 X-rays,
achieving an accuracy of around 96%, further vali-
dating the reliability of deep learning in respiratory
disease classification.

For rapid COVID-19 diagnosis using more ac-
cessible X-ray images, a study showed that a spe-
cially designed CNN trained on X-ray data achieved
very high accuracy 99.53%, outperforming pre-trained
models. This suggests that tailoring a CNN model
specifically to the unique features of X-ray images is
the most effective approach for classifying COVID-
19, pneumonia, and normal cases [6].

More recently, Kim et al. [7] (2022) applied an
EfficientNetV2-M based transfer learning framework
for multi-class classification on both NIH and SCH
datasets, reporting validation accuracies above 82%
across normal, pneumonia, pneumothorax, and tu-
berculosis, demonstrating strong generalization across
diverse clinical conditions. Together, these studies
underscore the growing impact of deep learning in
enhancing the accuracy and efficiency of lung disease
detection through automated medical image analysis.

In recent years, lightweight models such as Mo-
bileNetV3 and NASNetMobile have gained popularity
for mobile-based medical applications. However, de-
spite their efficiency, these models often compromise
accuracy. To address these limitations, DenseNet169
combines efficient gradient flow, feature reuse, and
deep hierarchical learning, making it highly effective
for complex medical image classification tasks.

Despite significant progress in recent years, studies
indicate that a universally optimal model for lung
disease classification using chest X-rays has not yet
been established. Existing models vary widely in
terms of performance, dataset quality, and general-
ization capability, highlighting the need for further
comparative research. Therefore, this study aims to
evaluate and compare multiple pretrained CNN ar-
chitectures using the mendeley Lung Disease dataset,
focusing on the classification of normal versus lung
disease images. The primary objective is to iden-
tify which model architecture achieves the highest
accuracy while maintaining computational efficiency.
Additionally, the study seeks to analyze the trade-offs
between model complexity, training time, and diag-
nostic performance to provide insights for developing
robust, reliable, and scalable AI-assisted diagnostic

tools for lung disease detection.

III. MATERIAL AND METHODS

Figure 1 shows the overall pipeline of the proposed
deep learning framework for lung disease classifica-
tion. The workflow integrates image preprocessing,
model training, performance evaluation, and interpret
ability analysis.

A. Data set
The dataset used in this study was obtained from

Mendeley Data (Mendeley et al. [8]), titled Lung
Disease Dataset. https://data.mendeley.com/datasets/
9d55cttn5h/1. The dataset comprising chest X-ray
images of normal, Lung Opacity and Viral Pneumonia
lungs. Which contain a total of 3,475 X-ray images.
Where Normal (1250 Images), Lung Opacity (1125
Images) and Viral Pneumonia (1100 Images). The
dataset includes preprocessed and annotated images
collected under clinical conditions, suitable for re-
search and benchmarking in medical image classifi-
cation shown in Figure 2.

Figure 2: Dataset Visualization: 12 Sample X-ray
Images

B. Image Pre-Processing
The dataset from Mendeley Data (Mandal et al.)

contains chest X-ray images labeled as Normal and
Lung Disease. Images were resized to a uniform
dimension of 224 × 224 pixels to ensure compatibility
with deep learning architectures. Preprocessing steps
included:

• Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE): enhanced contrast and improved
visibility of disease regions.

• Brightness Adjustment: standardized image il-
lumination to mitigate effects of variable light-
ing.

• Unsharp Masking: sharpened edges and en-
hanced lesion boundaries for better feature ex-
traction.

To overcome class imbalance and increase dataset
diversity, augmentation techniques such as random
rotations, flips and zooms were applied.

https://data.mendeley.com/datasets/9d55cttn5h/1
https://data.mendeley.com/datasets/9d55cttn5h/1
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Figure 1: Integrated methodological framework for YOLO-based road damage detection and generative AI
integration. The system combines CNN and YOLO architectures with an LLM (LLaMA) for enhanced reporting
and classification.

C. Deep Learning

Deep learning leverages artificial neural networks
with multiple layers to learn feature representations
directly from data. A Convolutional Neural Network
(CNN) performs the core feature extraction process,
where convolutional filters detect spatial hierarchies
in image pixels. The convolution operation is mathe-
matically defined as:

yi,j,k =
∑
m,n,c

wm,n,c,k × xi+m,j+n,c + bk (1)

This operation enables automatic pattern recogni-
tion such as textures, edges, and structures associated
with lung abnormalities. Activation functions like the
Rectified Linear Unit (ReLU), defined as

f(x) = max(0, x) (2)

introduce non-linearity into the network, allowing
it to learn complex patterns. Pooling layers are then
applied to reduce the spatial dimensionality of feature
maps while retaining the most significant information.
Finally, the Softmax function converts the final output
into class probabilities, given by:

P (y = i|x) = ezi∑C
j=1 e

zj
(3)

where zi represents the output of the ith neuron,
and C denotes the total number of classes. These
fundamental operations form the basis of CNNs used
in the proposed lung disease classification framework.

D. Pretrained Model

A pretrained model is a deep learning architec-
ture that has been previously trained on large-scale
benchmark datasets such as ImageNet. These models
learn generalized feature representations, including
edges, textures, and structural patterns, which can be
effectively transferred to new tasks. Instead of training
a model from scratch, transfer learning leverages
these pretrained weights and fine-tunes them on a
target dataset, significantly reducing computational
cost, training time, and the risk of overfitting when
data is limited.

Pretrained models are widely used in medical
image analysis due to their strong feature extrac-
tion capability. Rajpurkar et al. [1] demonstrated
radiologist-level pneumonia classification using a pre-
trained DenseNet architecture, highlighting the effec-
tiveness of transfer learning. Similarly, Kermany et al.
[2] achieved high diagnostic accuracy across multi-
ple medical conditions using pretrained convolutional
models. More recently, Kim et al. [7] utilized an
EfficientNetV2-M based transfer learning framework
for multi-class lung disease classification on NIH and
SCH datasets, reporting validation accuracies exceed-
ing 82% across pneumonia, pneumothorax, tuberculo-
sis, and normal classes. Alshmrani et al. [9] employed
a hybrid deep learning approach combining pretrained
CNNs with customized convolutional blocks to clas-
sify various lung abnormalities—including lung can-
cer, lung opacity, pneumonia, and tuberculosis—from
chest X-ray images, demonstrating robust perfor-
mance across heterogeneous clinical classes. Chehade
et al. [10] introduced a novel CycleGAN-based hybrid
deep learning model for lung disease classification
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from chest X-ray images, significantly improving di-
agnostic accuracy through synthetic image enhance-
ment. Deepak et al. [11] proposed a multi-stage
deep learning framework integrating multiple CNN
architectures for comprehensive lung disease classifi-
cation, achieving a training accuracy of approximately
98.61%. Furthermore, Fu et al. [12] developed an
explainable hybrid transformer model, named Lung-
MaxViT, which combines convolutional blocks with
a multi-axis transformer architecture for multi-class
lung disease classification using the COVID-QU-Ex
and ChestX-ray14 datasets, achieving 96.8% accuracy
and 98.3% AUC on COVID-19 classification tasks,
and 93.2% AUC on ChestX-ray14, demonstrating su-
perior performance and explainability across diverse
disease classes.

In this study, several widely adopted pretrained
architectures—including CNN, VGG19, ResNet50,
ImageNet 227, MobileNetV3, Xception,
Inception, NASNetMobile, EfficientNetV2, and
DenseNet169—were fine-tuned on the chest
radiograph dataset. DenseNet variants often
outperform alternative architectures due to dense
connectivity and efficient parameter utilization,
as reported by Hussain et al. This observation is
consistent with our experimental findings.

E. DenseNet169

DenseNet169 architecture, introduced by Huang et
al. (2017). DenseNet169 employs dense connectivity,
where each layer receives feature maps from all pre-
ceding layers, improving information flow and feature
reuse.

Each dense block comprises batch normalization,
ReLU activation, and 3×3 convolutions, followed by
transition layers that perform 1×1 convolution and
2×2 average pooling. The model’s growth rate con-
trols the number of feature maps added per layer,
enhancing representational efficiency.

In this study, the pretrained DenseNet169 model
was fine-tuned for binary classification (normal vs.
diseased). The final classification layers were modi-
fied to include:

Global Average Pooling Layer

Dense Layer (ReLU activation)

Dropout (rate = 0.3)

Dense Output Layer (Softmax activation)

The Adam optimizer (learning rate = 0.001) and
categorical cross-entropy loss were used for training.
Early stopping was applied based on validation loss
to prevent overfitting., as illustrated in Figure 3.

Figure 3: Architecture of DenseNet169-based lung
disease classification model.

F. Evaluation Metrics
The performance of each model was evaluated

using the following metrics:
a) Accuracy::

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

b) Precision::

Precision =
TP

TP + FP
(5)

c) Recall::

Recall =
TP

TP + FN
(6)

d) F1-Score::

F1 = 2× Precision × Recall
Precision + Recall

(7)

Additionally, the Receiver Operating Characteristic
(ROC) curve and the Area Under the Curve (AUC)
were computed to measure the model’s discriminabil-
ity. A higher AUC indicates a better ability of the
model to distinguish between different classes.

IV. EXPERIMENTAL STUDY

The experiments were performed using Visual Stu-
dio Code (VS Code) on a system equipped with
an NVIDIA RTX 3060 GPU . Model training was
performed using the TensorFlow/Keras framework
with categorical cross-entropy as the loss function and
the Adam optimizer. A batch size of 32 and a total
of 60 epochs were used for model convergence. To
avoid overfitting, an early early stopping strategy was
employed based on validation loss monitoring.

All the models ResNet50 [13], VGG19 [14], Im-
ageNet227 [15], MobileNetV3 [16], Xception [17],
Inception [18], NASNetMobile [19], EfficientNetV2
[20] and DenseNet169 [21] were trained using identi-
cal data preprocessing and augmentation pipelines to
ensure fair performance comparison.
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These architectures were selected due to their
proven performance in image classification tasks
and ability to generalize across agricultural datasets.
Transfer learning with fine-tuning was employed to
adapt them for the tea leaf disease dataset.

V. EXPERIMENTAL RESULT

A. Training & Validation Setup

The dataset was divided into 80% training, 10%
validation, and 10% testing subsets, as shown in
Figure 4.

Figure 4: Dataset split distribution showing the pro-
portion of images used for training (80%), validation
(10%), and testing (10%).

B. Accuracy & Loss Curves

1) DenseNet169: To evaluate the performance of
the DenseNet169 architecture, experiments were con-
ducted on the prepared dataset. The model was
trained using appropriate optimization and regular-
ization techniques to ensure stable convergence and
reduce overfitting. During training, both the train-
ing and validation losses showed a steady decline
across epochs, while accuracies gradually increased
and stabilized, demonstrating effective learning and
generalization. As illustrated in Figure 5, the vali-
dation accuracy closely followed the training accu-
racy, indicating minimal overfitting and consistent
performance across datasets. Upon final evaluation,
the DenseNet169 achieved a classification accuracy of
95.97%, with a corresponding loss of approximately
0.10 on the test set. These results validate the model’s
strong capability in capturing relevant spatial features
from tea leaf images and its reliability for disease
classification tasks.

Figure 5: Training and validation loss (left) and
accuracy (right) curves for the DenseNet169 model,
showing stable convergence and strong generalization.

2) CNN Model: The performance of the Standard
Convolutional Neural Network (CNN) architecture,
experiments were conducted on the prepared dataset.
The model was trained using appropriate optimization
and regularization techniques to ensure stable conver-
gence and reduce overfitting. During training, both the
training and validation losses showed a steady decline
across epochs, while accuracies gradually increased
and stabilized, demonstrating effective learning and
generalization. As illustrated in Figure 6, the valida-
tion accuracy closely followed the training accuracy,
indicating minimal overfitting and consistent perfor-
mance across datasets. Upon final evaluation, the
customized CNN achieved a classification accuracy of
89.63%, with a corresponding loss of approximately
0.35 on the test set. These results validate the model’s
strong capability in capturing relevant spatial features
from tea leaf images and its reliability for disease
classification tasks.

Figure 6: Training and validation loss (left) and ac-
curacy (right) curves for the customized CNN model,
showing stable convergence and strong generalization.

3) VGG19: To assess the performance of the pre-
trained VGG19 architecture, fine-tuning was per-
formed on the prepared dataset. The model was
trained using transfer learning, leveraging pre-trained
ImageNet weights, while the final layers were mod-
ified for four-class classification. Throughout train-
ing, both training and validation accuracies increased
consistently, stabilizing around 90%, while the corre-
sponding losses declined steadily, as shown in Fig-
ure 7. The close alignment between training and
validation curves indicates effective generalization
with minimal overfitting. Upon evaluation, the fine-
tuned VGG19 achieved a classification accuracy of
approximately 88% and a test loss near 0.4. These
results demonstrate that VGG19 effectively captures
deep hierarchical features, though at a higher com-
putational cost compared to lightweight architectures
such as MobileNetV3.

Acer
Journal of Intelligent Systems with Applications 2025; 8(2): 1-10



6

Figure 7: Training and validation accuracy (left) and
loss (right) curves for the VGG19 model, showing
steady convergence and strong generalization.

4) ResNet50: The performance of the pre-trained
ResNet50 architecture was evaluated on the tea leaf
disease dataset using transfer learning.As shown in
Figure 8, both training and validation accuracies im-
proved gradually throughout the epochs, stabilizing
around 52%. Correspondingly, the loss decreased con-
sistently from approximately 1.6 to 1.2, indicating
moderate convergence. However, the relatively low
accuracy suggests that ResNet50 struggled to adapt
effectively to the limited dataset size and domain-
specific features of tea leaf images. Overall, while
ResNet50 demonstrated stable learning behavior, its
deeper structure led to higher computational cost and
slower convergence compared to more lightweight
architectures such as MobileNetV3.

Figure 8: Training and validation accuracy (left) and
loss (right) curves for the ResNet50 model, showing
gradual convergence but limited classification perfor-
mance.

5) ImageNet227: Experiments with the
ImageNet227-based architecture involved fine-
tuning pre-trained weights. Regularization and
early stopping maintained stability during training.
Both losses and accuracies improved moderately,
as shown in Figure 9. Validation closely followed
training, indicating acceptable generalization. The
model achieved a test accuracy of 88.77Overall,
DenseNet121 demonstrated efficient learning with
reduced overfitting risk and competitive accuracy,
though at a higher computational cost compared to
lightweight architectures like MobileNetV3.

Figure 9: Training and validation accuracy (left) and
loss (right) curves for the ImageNet227 model, show-
ing rapid convergence and effective generalization.

6) MobileNetV3: MobileNetV3, designed for
lightweight and efficient feature extraction, was
evaluated with data augmentation and dropout
regularization. Training and validation curves showed
smooth convergence in Figure 10, with validation
closely following training trends. The model attained
a test accuracy of 93.37%, confirming its high
efficiency and good accuracy while maintaining low
computational cost.

Figure 10: Training and validation loss (left) and
accuracy (right) curves for the MobileNetV3 model,
showing rapid convergence and superior generaliza-
tion.

7) Xception: The Xception architecture was uti-
lized for depthwise separable convolutions and
improved feature representation. Experiments used
Adam optimizer and L2 regularization to stabilize
training. Losses decreased steadily, and accuracies
increased consistently shown in Figure 11. The final
evaluation produced an accuracy of 89.05%, indicat-
ing stable convergence and reliable performance for
disease classification.

Figure 11: Training and validation loss (left) and ac-
curacy (right) curves for the Xception model, showing
rapid convergence and superior generalization.

8) Inception: Inception architecture experiments
incorporated multi-scale feature extraction with batch
normalization and dropout. Training and validation
metrics improved slowly and stabilized given in Fig-
ure 12. Validation accuracy lagged slightly behind
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training, reflecting limited generalization. The model
achieved a test accuracy of 77.52%, indicating mod-
erate capability in capturing complex features.

Figure 12: Training and validation loss (left) and ac-
curacy (right) curves for the Inception model, showing
rapid convergence and superior generalization.

9) NASNetMobile: NASNetMobile was evaluated
for its architecture optimized via neural architecture
search. Regularization and fine-tuning of top layers
were applied. Training and validation losses declined
minimally, and accuracies were low shown in Fig-
ure 13. Validation closely mirrored training, but the
final test accuracy was only 31.00%, highlighting poor
convergence on the dataset.

Figure 13: Training and validation loss (left) and
accuracy (right) curves for the NASNetMobile model,
showing rapid convergence and superior generaliza-
tion.

10)EfficientNetV2: EfficientNetV2 employed com-
pound scaling and optimized efficiency. Fine-tuning,
data augmentation, and regularization were applied.
Both training and validation curves showed steady im-
provement in Figure 14, with minimal overfitting. On
evaluation, EfficientNetV2 achieved a test accuracy
of 94.81%, demonstrating excellent balance between
accuracy and computational efficiency.

Figure 14: Training and validation loss (left) and
accuracy (right) curves for the EfficientNetV2 model,
showing rapid convergence and superior generaliza-
tion.

VI. DISCUSSION

A. Accuracy Comparison of Models

A comparative performance evaluation was con-
ducted among the ten deep learning architec-
tures CNN, VGG19, ResNet50, ImageNet227, Mo-
bileNetV3, Xecption, Inception, NASNetMobile, Ef-
ficientNetV2 and DenseNet169 to identify the most
effective model for tea leaf disease classification.
As shown in Table I, DenseNet169 achieved the
highest overall accuracy of 95.97%, outperforming
all other models while maintaining low computational
complexity.

The Standard CNN, VGG19, ImageNet227, Xcep-
tion, MobileNetV3 and EfficientNetV2 achieved accu-
racies above 85%, demonstrating reliable performance
on smaller-scale networks. DenseNet169 provided
balanced accuracy and generalization with efficient
feature reuse, whereas ResNet50 and NASNetMobile
showed limited adaptability to the dataset, achieving
only moderate accuracy due to over-parameterization
and domain mismatch.

Overall, DenseNet169 exhibited superior conver-
gence stability, minimal loss, and robust generaliza-
tion, confirming its suitability for real-time, resource-
constrained agricultural disease detection systems.

B. Loss Comparison of Models

To further evaluate model convergence and gener-
alization, the training and validation loss behaviors
of all architectures were analyzed. As summarized in
Table II, the DenseNet169 model achieved the lowest
overall loss, demonstrating efficient optimization and
superior stability across epochs.

Other models like the CNN, VGG19, ImageNet227,
Xception, MobileNetV3 and EfficientNetV2 exhibited
consistent loss reduction with minimal overfitting,
indicating stable learning. Inception showed rapid
convergence with smooth loss curves, confirming its
strong gradient flow and feature reuse capability. In
contrast, NasNetMobile and ResNet50 recorded com-
paratively higher loss values throughout training, re-
flecting limited adaptability to the dataset and slower
convergence due to its deeper structure.

Overall, DenseNet169 demonstrated the most ef-
fective loss minimization, achieving near-zero final
training and validation loss, which corresponds to its
high classification accuracy and strong generalization
capability.

C. F1-Score of Proposed Models

The class-wise performance analysis revealed F1-
scores above 0.93 for all disease categories, demon-
strating strong discriminative capability of the pro-
posed model. Notably, the model achieved perfect per-
formance in distinguishing Blight (Gray and Brown)
from other classes, as presented in Table III.
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Model Accuracy (%) Remarks
ResNet50 52.00 Poor adaptation to dataset
VGG19 88.00 DDeep but computationally expensive
ImageNet227 88.77 Moderate performance
CNN 89.63 Good baseline model
MobileNetV3 93.37 Lightweight and efficient
Xception 89.05 Stable convergence
Inception 77.52 Limited generalization
NASNetMobile 31.00 Poor convergence
EfficientNetV2 94.81 Excellent accuracy and efficiency
DenseNet169 95.97 Best performance and robust generalization

Table I: Performance comparison of different models on tea leaf disease classification.

Model Train Loss Validation Loss Observation
ResNet50 1.05 1.08 Stable convergence, minor overfitting
VGG19 0.29 0.25 Smooth convergence with balanced loss
ImageNet227 0.16 3.41 High loss, slow convergence
CNN 0.21 0.25 Rapid convergence, low variance
MobileNetV3 0.07 3.60 Rapid convergence, low variance
Xception 0.87 0.39 Rapid convergence, low variance
Inception 0.25 2.69 Rapid convergence, low variance
NASNetMobile 0.15 8.71 Rapid convergence, low variance
EfficientNetV2 0.40 0.45 Rapid convergence, low variance
DenseNet169 0.06 0.14 Near-zero loss, optimal generalization

Table II: Comparison of final training and validation loss across different models.

Class F1-Score Precision–Recall Balance
Viral Pneumonia 1.00 Excellent
Lung Opacity 0.93 High
Normal 0.94 High
Average 0.96 –

Table III: Class-wise F1-score values for tea leaf
disease classification using DenseNet169.

D. AUC and PR for Proposed Model

The Receiver Operating Characteristic (ROC) and
Precision-Recall (PR) analyses were conducted to
further evaluate the classification performance of the
DenseNet169 model. As shown in Figure 16, all
two disease categories Viral Pneu-monia and Lung
Opacity exhibited exceptionally high discriminative
capability.

The AUC (Area Under the Curve) values were
0.99 for Lung Opacity, 1.00 for Viral Pneumonia,
and 0.99 for Normal, confirming outstanding model
sensitivity and specificity across all classes. Similarly,
the Average Precision (AP) scores from the PR curves
were 0.98, 0.98, and 1.00, respectively indicating
excellent precision-recall balance even under potential
class imbalance.

These results validate the strong reliability, robust-
ness, and generalization capacity of the proposed
DenseNet169 model for multi-class tea leaf disease
classification. Figure 15 Showing predictions and con-
fidence levels for various chest X-ray scans.

Figure 15: MobleNet V3’s predictions and confidence
levels for various chest X-ray scans.
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(a) Multi-class ROC curves with AUC values ≥ 0.99 for
all classes.

(b) Precision–Recall curves showing balanced precision
and recall across classes.

Figure 16: Comparison of (a) Receiver Operating
Characteristic (ROC) and (b) Precision–Recall (PR)
curves for the proposed MobileNetV3 model. Both
metrics confirm excellent class-wise performance with
AUC and AP values close to 1.00.

VII. CONCLUSION

This study found that the DenseNet169 archi-
tecture, a state-of-the-art lightweight convolutional
neural network, for accurate classification of Lung
Xray into Three categories: Lung Opacity, Normal,
Viral Pneumonia. The fine-tuned DenseNet169 model
achieved an outstanding overall accuracy of 95.97%,
surpassing several conventional CNN architectures
while maintaining high computational efficiency. The
integration of preprocessing, data augmentation, and
transfer learning significantly enhanced the model’s
generalization and robustness. Due to its compact
design and low inference latency, the proposed frame-
work can be seamlessly deployed on IoT and edge
devices for real-time monitoring and early detection
of tea leaf diseases. This makes it a practical and scal-
able solution for advancing precision agriculture and
promoting sustainable tea production in Bangladesh
and other tea-growing regions worldwide.

LIMITATIONS AND FUTURE WORK

While DenseNet169 achieved high accuracy in
classifying chest X-ray images, the study faced certain

limitations that open avenues for future enhancement:
• Dataset Expansion: Increasing the dataset size

by incorporating multi-regional, multi-seasonal,
and more diverse samples to improve model
generalizability.

• Disease Coverage: Including additional disease
categories to enhance the robustness and versa-
tility of the classification system.

• IoT Integration: Deploying the model on IoT-
enabled mobile and edge devices for real-
time field monitoring and decision support in
resource-constrained environments.

• Lightweight Optimization: Investigating more
efficient and compact architectures to im-
prove inference speed and performance on low-
resource hardware.

• Hardware Constraints: Limited computa-
tional resources restricted the training of large
models, affecting both training speed and evalu-
ation performance. Future work should explore
distributed training, cloud-based resources, or
model compression techniques to mitigate these
issues.

MATERIALS AVAILABILITY

The computational code supporting
the findings of this study is publicly
accessible on GitHub for academic use and
reproducibility:https://github.com/MUnknown97/
Classification-of-Lung-Diseases-on-Chest-Xray.
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