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Abstract⎯ Ionic liquids have applications across various 

scientific fields, in part, due to their interesting physical and 

chemical properties. Comprehensive assessments of their 

toxicological profiles are necessary to allow their safe and suitable 

applications. Unlike prior ionic liquid toxicity predictions which 

rely on small descriptor sets, we integrate joint 2D and 3D 

descriptors with random forest which explains the most important 

descriptors to address these limitations. This study aims to predict 

the toxicity of ionic liquids using 2D and 3D molecular descriptors 

by utilizing machine learning.  In particular, we propose the 

random forest regression model to uncover molecular descriptors 

and toxicity patterns. Additionally, GridSearchCV is used to tune 

the hyperparameters to ensure optimal model performance. 

Several metrics were calculated to evaluate the model’s accuracy. 

The model achieved R²=0.879 which indicates strong predictive 

performance. Our study demonstrates the benefits of 2D and 3D 

descriptors for predicting the toxicity of ionic liquids, showing 

strong correlations between experimental and predicted toxicities.  

Our analysis of features using 2D and 3D descriptors highlighted 

those descriptors that are strongly associated with toxicity 

predictions. Feature importance highlights that physicochemical 

factors effect toxicity which provides interpretation for ionic liquid 

design. This study demonstrates the effectiveness of predicting the 

toxicity of ionic liquids by integrating molecular descriptors and 

machine learning, thereby facilitating the safer production and 

application of ionic liquids.   

Keywords⎯ Ionic Liquids, Random Forest, Explainable ML, 
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1 https:// https://www.geeksforgeeks.org/machine-

I.INTRODUCTION 

ILs are a unique and new class of salts consisting entirely of 

cations and anions that maintain a liquid form below 100˚C. ILs 

have gained attention for their applications in bio-catalysis and 

electrochemistry due to their high thermal stability and 

versatility, also known as green solvents [1,2,3]. However, 

recent studies highlight their environmental impact due to their 

varying level of toxicity [4,5,6,7]. 

The ILs pose a hurdle because the cation-anion combinations 

limit the ability to test every compound for toxicity. To address 

this gap, new methods, such as QSAR (Quantitative Structure-

Activity Relationship), are being implemented [8,9]. QSAR 

model uses computational power to predict toxicity using 

molecular descriptors, resulting in faster and cheaper results 

than laboratory work without sacrificing quality.  

Moreover, random forests, support vector machines, and 

gradient boosting approaches have demonstrated the ability to 

accurately describe complex nonlinear correlations between the 

structural characteristics of a molecular entity and toxicity. 

Hence, the use of machine learning techniques in QSAR has 

never been higher [10,11,12]. Moreover, molecular data in 

SMILES format can be more effectively described by deep 

models using convolutional neural networks (CNNs), which 

automatically perform feature extraction and enhance the 

model’s performance [13,14]. 

This study focuses on utilizing a random forest regression 

model, implemented in Python1, to examine the predictive 

capability of molecular descriptors for estimating the toxicity 

(logEC50) of ionic liquids, accomplishing the objectives of this 

study. This work aims to develop predictive models from two-

dimensional (2D) and three-dimensional (3D) molecular 

descriptors. Additionally, this study seeks to utilize feature 

selection tools to identify key molecular descriptors, along with 

hyperparameter tuning, to enhance model reliability. The 

learning/random-forest-regression-in-python/ 
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proposed approach focuses on predicting the toxicity of ILs and 

improving the interpretability of descriptors corresponding to 

toxicity. Consequently, it stimulates the creation of more 

environmentally friendly and safer chemical alternatives. 

This work offers a framework that is both interpretable and 

grounded in existing literature, connecting prevalent QSAR 

descriptors to chemically reasonable toxicity mechanisms and 

provides screening recommendations for ionic liquid 

candidates with reduced toxicity (see Figure 5). 

II.MATERIALS and METHODS 

A. Dataset acquisition 

For this research, the dataset containing information on the 

toxicity of ILs was obtained from literature [15]. The dataset 

comprises toxicological data for 355 ILs represented as 

logEC50 values, which are measured on a logarithmic scale. 

Each record represents an ionic liquid in SMILES (Simplified 

Molecular Input Line Entry System) format. Each entry’s 

experimentally obtained logEC50 value provides a quantitative 

assessment of toxicity, enabling analysis based on empirical 

data. Some samples of the dataset are provided below in Table 

1, to show its structure and the type of information that are 

included. 

 

Table 1: Data for Ionic Liquids and their Experimental 

logEC50 

IL 

N

o. 

SMILES 

Experim

ental 

logEC50 

1 [N+](C)(C)(CC)COCC.[Cl-] 3.59 

2 
O1c4c(O[B-]12Oc3c(O2)cccc3)cccc4.

CC[N+](CC)(CC)CC 
1.17 

3 
[N+](C)(C)(Cc1ccccc1)CCCCCCCCCC.[C

l-] 
0.64 

 

In the current study, ILs of the dataset are characterized by their 

molecular structure and associated toxicity values. The 

molecular structures are represented in SMILES notation, and 

their toxicity is expressed by experimental logEC50 values, 

which represent half-maximal effective concentration. We 

determined the 2D and 3D descriptors using the RDKit toolkit 

in Python (in particular, the functions in the Chem module)2, 

representing the input vectors of the ionic liquid geometrical 

and chemical structure composition, as well as their 

physical/chemical molecular features. The final matrix included 

all computed 2d and 3d descriptors which were successfully 

calculated. 

 B. Dataset Preprocessing Tasks  

 
2 
https://www.rdkit.org/docs/GettingStartedInPython.ht

We preprocessed the input data to enhance its quality and to 

make it suitable for use in machine learning.  

• Imputation of Missing Values: Missing values were imputed 

with column-wise mean imputation using Scikit-learn's [16] 

SimpleImputer module in Python . Handling missing values 

was applied to the full descriptor matrix before training the 

model. 

• Feature Integration and Normalization [17,18]: The toxicity 

dataset and molecular descriptor dataset were combined to yield 

an integrated feature matrix. Normalization was not applied 

either for calculated descriptors or random forest. 

Standardization was implemented only for plots to be 

diagnosed.  

C. Model development 

Since the RF repressor [19] is effective with high-dimensional 

datasets, resistant to overfitting, and interpretable using feature 

importance metrics, it was selected as the prediction model for 

this study. The dataset was split into an 80:20 ratios (80% for 

training, and 20% for testing). The test dataset was used to 

evaluate the model’s prediction accuracy on new and unseen 

data [20]. 

Hyperparameter tuning was performed using GridSearchCV 

[21], targeting parameter adjustments of values such as the 

maximum tree depth (the so-called max_depth parameter in 

Python) and the number of estimators (the parameter 

n_estimators in Python). Hyperparameters were selected with 

GridSearchCV using 3-fold cross-validation on the training 

split with R² optimizing. The grid spanned n_estimators {100, 

200, 300}, max_depth {None, 10, 20, 30}, min_samples_split 

{2, 5, 10}, and min_samples_leaf {1, 2, 4} with n_jobs = −1 and 

random_state = 42. The selected configuration was 

n_estimators = 300, max_depth = 10, min_samples_split = 2, 

and min_samples_leaf = 1. 

D. Performance Metrics          

The model's prediction accuracy was assessed using the 

following standard metrics. 

• Mean Absolute Error (MAE): A measure of the average 

magnitude of prediction errors [22].  

• Root Mean Squared Error (RMSE): It gives more 

emphasis to prediction errors for greater differences 

[23].  

• Pearson correlation coefficient (r): It measures the scale 

of linear relationship between the predicted and 

observed toxicity (logEC50) values [24].  

• Coefficient of Determination (R²): It gives a proportion 

of variance in observed values that explained by the 

model [25]. 

ml 
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E. Visualization and analysis  

• Importance of features: The relative contribution of 

each molecular descriptor towards the prediction of IL 

toxicity was calculated based on the values of feature 

importance derived using the RF model [26]. A bar plot 

was created to identify the most critical features, 

providing information about the significant molecular 

properties accountable for toxicity predictions. 

• Correlation analysis: Predictive validity of the model 

was assessed by comparing the experimental and 

predicted logEC50 values in a plot based on scatter. The 

Pearson correlation coefficient was also calculated, 

giving a numerical measure of the capacity of the model 

to approximate the linear relationship between these 

values [27].  

III.RESULTS 

A. Model Performance 

RF regression model demonstrated good prediction capability 

for toxicity values of ionic liquids from 2D and 3D molecular 

descriptors. The following parameters were used to evaluate 

the model’s performance on the test dataset, as shown in Table 

2. 

 

Table 2: Performance parameters of the model on the test 

dataset. 

Evaluation Metrics Value 

R2 Score 0.8790 

MAE 
0.2776 

 

RMSE 0.3833 

Pearson Correlation 

Coefficient 
0.9379 

In particular, our results demonstrate the model’s accuracy in 

predicting toxicity using these molecular descriptors through 

the ML approach. This is evident from the high linear 

correlation between predicted and actual values, as shown by 

the high Pearson correlation coefficient (see Table 2). The first 

goal of accurate toxicity prediction of ionic liquid is supported 

in Table 2. The second goal which is identifying key descriptors 

is addressed by explaining the most influential descriptors 

below. 

B. Feature importance 

The feature importance analysis showed the molecular 

descriptors most important to the predictive accuracy of the 

model. Among the 20 top descriptors, SMR_VSA5 and 

VSA_EState7 had significantly higher importance scores 

compared to the others. SMR_VSA5 calculates van-der-Waals 

areas for atoms that are contained within a mid-range molar-

refractivity bin, which is chosen here to positively track 

exposed hydrophobic surface.  

Higher values, therefore, indicate bulkier or more hydrophobic 

fragments, a trend that is also seen at higher IL toxicity (due to 

better penetration into the membrane). 

VSA_EState7 is the sum of atom contributions for a mid-high 

area bin; it connects local electronic environment with available 

surface. In application, higher VSA_EState7 values mean more 

electronically active surface exposed atoms as would be 

expected for more intense intermolecular interactions that can 

raise observed toxicity.  

When combined, these descriptors suggest a 

hydrophobicity/accessible-surface and local-electronics 

process, suggesting that bulk and charge-distribution properties 

are the main sources of the toxicity estimates in the model. A 

relative importance bar chart of the 20 most influential 

descriptors is provided in Fig. 1.  

 

Figure 1: Bar plot of the top 20 molecular descriptors ranked 

by importance. 

C. Correlation between actual and predicted values 

Fig. 2 is a scatter plot between observed and expected 

logEC50 values. The scatter plot is highly linear along the 

diagonal line (y = x) and exhibits good predictability. The 

random outliers could have been a result of dataset limitations, 

even though almost all the predictions, except for a few, were 

close to the experimental value.
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Figure 2: Scatter plot of the observed versus predicted 

logEC50 values. The diagonal line represents the baseline. 

 

D. Model evaluation with confidence intervals 

In this study, we investigated the RF model's performance 

on training and test datasets, with a focus on confidence 

intervals, which can provide insight into the uncertainty 

and variability of model predictions for individual data 

points. 

E. Confidence interval for test data 

Fig. 3 shows the mean of predicted and actual points for the 

test set, along with a 95% confidence interval for each point. 

The same analysis also highlights the spread in predictions and 

indicates where the model's performance might be less 

uniform. 

 

Figure 3: The 95% confidence interval of observed versus 

predicted toxicities measured for the test dataset. 

The critical observations are as follows: 

➢ The ones with broad intervals indicate instances where 

the model doesn't predict well Most of the data points 

have tight confidence intervals, showing that the 

predictions are reasonable. 

F. Comparison across training and datasets 

The mean of actual and predicted values for the train and test 

sets, along with a 95% confidence interval for each point, is 

depicted in Fig. 4. 

The critical observations are as follows: 

• The model is a good fit to the training data, as is 

evident from the lower confidence intervals of the 

training dataset. 

• As is the case when extrapolating to new data, the test 

data intervals are marginally wider. 

Confidence interval analysis identifies areas for optimization in 

the outliers and verifies that the model performs well on training 

data and reasonably well on test data. 

 

Figure 4: Confidence Interval of True vs. Predicted Values for 

Training and Test Datasets. 

length beyond a certain point may negatively impact the 

model's performance due to insufficient data. 

IV.Discussion  

The correlation coefficient obtained between all molecular 

descriptors and IL toxicity was 0.8790, and the Pearson 

correlation coefficient was 0.9379, demonstrating the high 

capability of the model to predict IL toxicity from their 

molecular descriptors. In addition, compared with other models 

(See Table 3), the low MAE (0.2776) and RMSE (0.3833) 

verify the reliability and universality of the model. 
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Table 3: comparison table that benchmarks results against 

representative IL toxicity QSAR studies. 

Study 

Endpoint 

/ cell 
n Algorithm(s) 

Reported 

R² (test 

unless 

noted) 

Zhao et 

al., 2014 

[28].  

IPC-81, 

logEC50 
304 MLR, SVM 

0.892 

(MLR), 

 0.958 

(SVM) 

Wang et 

al., 2020 

[2]. 

IPC-81, 

logEC50 
355 FNN, SVM 

0.8917 

(FNN), 

 0.9202 

(SVM) 

Ahmadi 

et al., 

2022 

[29]. 

IPC-81, 

logEC50 
304 

CORAL 

(Monte Carlo 

QSTR) 

0.85 

(validation) 

Proposed 

Model  

IPC-81, 

logEC50 
355 

Random 

Forest 0.879 (test) 

 

The feature importance analysis identified molecular descriptors 

critical to the predictive ability of the model. The two highest-

ranked descriptors, SMR_VSA5 and VSA_EState7, are associated 

with electronic and spatial molecular properties. They are likely 

to describe meaningful physicochemical interactions involved in 

IL toxicity, such as lipophilicity, size, electron density, reactivity, 

and polarity. The prevalence of these traits aligns with previous 

research, which has also portrayed the prominence of electronic 

and spatial characteristics in IL interactions with biological 

systems. Our test set performance (R² = 0.879) is consistent with 

the reported range for ionic-liquid toxicity QSAR models for 

comparable endpoints and assessment schemes [30,31]. 

Consistent with the QSAR IL literature in general, tree-based 

approaches are rivaling conventional baselines: previous work 

shows SVM and MLR giving good results on similar IL toxicity 

tasks, against which our Random Forest result is competitive 

[12,28]. 

In order to investigate the chemical reasonableness of salience of 

SMR_VSA5 and VSA_EState7; RDKit classifies them as 

surface-area-hybrid descriptors summarizing molar-refractivity-

binned van-der-Waals surface (SMR_VSA) or 

electrotopological-state values over surface-area bins 

(VSA_EState) with hydrophobic surface-exposure and local 

electronic environment tied to interaction potential [32]. The 

underlying electrotopological-state indices of VSA_EState are 

long-established QSAR indices of historical precedent and 

represent atom-level electronic and topological effects pertinent 

to activity and toxicity. 

For clarity, we say that cross-paper metric comparison should be 

treated with caution since endpoints, descriptor sets, and split 

protocols vary, thus our quantitative benchmarking is stated as 

"within-range" and not superiority assertions [33]. 

The RF model performed as well as other recent machine 

learning models, such as Meta-Ensemble for IL toxicity 

prediction [34]. It is as effective as complex models in providing 

a satisfactory linear correlation between experimental and 

predicted toxicity values. Specifically, RF's interpretability, as 

revealed through feature importance analysis, gives it a 

significant advantage compared with more sophisticated models. 

The appropriateness of RF for model interpretability predictive 

tasks comes to the front as a result of this trade-off between 

accuracy and transparency [3,4].  

Though the model functioned reasonably well overall, there were 

outlying data points in the scatter plot that resulted in 

discrepancies in experimental and calculated values. These are 

induced by missing data points in the given dataset; for example, 

present noise, diversity of the structures, and physical-chemical 

properties of ionic liquid molecules, or lack of significant 

descriptors that could play a crucial role in predicting toxicity. 

Furthermore, overreliance on the descriptors necessitates a closer 

examination of their influence on the prediction of ionic liquids’ 

toxicity using the machine learning approaches. Below is a 

schematic overview summarizing the study’s workflow. 

 

Figure 5: Conceptual summary of the QSAR workflow for 

ionic-liquid toxicity prediction. Curated IL structures were 

encoded as 2D and 3D RDKit descriptors, modeled with a RF 

regression. Feature-importance analysis highlights 

SMR_VSA5 and VSA_EState7 among the top contributors to 

the model’s estimates. 
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V.Implications and Future Directions 

The findings of this study hold tremendous implications for the 

design of cleaner and more secure ionic liquids. This work 

provides a structure-based optimization framework for ILs that 

reduce environmental and biological risks by defining 

molecular descriptors that have the most influence on predicting 

ionic liquid toxicity.  

Furthermore, the efforts may include expanding the diversity of 

molecules in the dataset with ionic liquids of different physical 

and chemical properties, as well as geometrical structures, 

including various chemical functional groups. Furthermore, 

including other descriptors, such as quantum-chemical 

descriptors, could enhance the predictive performance of 

machine learning approaches. Exploring ensemble or hybrid 

models could further improve prediction power by improving 

the algorithms. The work demonstrates the potential of applying 

2D and 3D molecular descriptors, along with machine learning, 

for more effective prediction of IL toxicity. The creation of 

computational facilities in green chemistry facilitates the 

development of environmentally friendly and safer chemical 

substitutes. 

VI.Conclusions 

In this study, we examined the use of the RF regression model 

to predict the toxicity (in logEC50 scale) of ionic liquid 

molecules. The molecules were represented by their 2D and 3D 

molecular descriptors.  

The model was found to be predictive, as indicated by an R² 

value of 0.8790, a Pearson correlation coefficient of 0.9379, and 

low error values (MAE: 0.2776, RMSE: 0.3833). These 

findings suggest the potential use of machine learning 

approaches to model even complex chemical and physical 

relationships between molecular descriptors and IL toxicity at a 

desired level of accuracy. 

Furthermore, feature selection analysis identified crucial 

molecular descriptors (e.g., SMR_VSA5 and VSA_EState7) as 

the most critical features, based on their scores, in predicting 

ILs toxicity. This is crucial in providing insights into the 

electronic and structural properties that govern IL toxicity, 

thereby facilitating the development of safer and greener ionic 

liquids. The high correlation between predicted and 

experimentally obtained values further assures the robustness 

of the Random Forest model and its applicability in 

cheminformatics. 

Despite these results, the study has some limitations, including 

missing descriptors and outliers, which can affect toxicity. 

Future studies could explore the use of more sophisticated 

models, such as ensemble or hybrid models, to improve 

predictive accuracy and generalizability of the molecular 

descriptors. 

In short, this study is a contribution to green chemistry as it 

presents a computational method of estimating IL toxicity. 

The results opened the door to the rational design of less 

harmful ionic liquids, securing their safe and sustainable 

application in industry and the environment. 
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first. 
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file for Random Forest model by using GridSearch for 
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descriptors. 

• Book1.csv: SMILES and corresponding toxicity 
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