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Abstract— lonic liquids have applications across various
scientific fields, in part, due to their interesting physical and
chemical properties. Comprehensive assessments of their
toxicological profiles are necessary to allow their safe and suitable
applications. Unlike prior ionic liquid toxicity predictions which
rely on small descriptor sets, we integrate joint 2D and 3D
descriptors with random forest which explains the most important
descriptors to address these limitations. This study aims to predict
the toxicity of ionic liquids using 2D and 3D molecular descriptors
by utilizing machine learning. In particular, we propose the
random forest regression model to uncover molecular descriptors
and toxicity patterns. Additionally, GridSearchCV is used to tune
the hyperparameters to ensure optimal model performance.
Several metrics were calculated to evaluate the model’s accuracy.
The model achieved R2=0.879 which indicates strong predictive
performance. Our study demonstrates the benefits of 2D and 3D
descriptors for predicting the toxicity of ionic liquids, showing
strong correlations between experimental and predicted toxicities.
Our analysis of features using 2D and 3D descriptors highlighted
those descriptors that are strongly associated with toxicity
predictions. Feature importance highlights that physicochemical
factors effect toxicity which provides interpretation for ionic liquid
design. This study demonstrates the effectiveness of predicting the
toxicity of ionic liquids by integrating molecular descriptors and
machine learning, thereby facilitating the safer production and
application of ionic liquids.

Keywords— lonic Liquids, Random Forest, Explainable ML,
Toxicity Prediction, GridSearchCV, hyperparameter tuning,
Molecular Descriptors, 2D and 3D descriptors
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I.INTRODUCTION

ILs are a unique and new class of salts consisting entirely of
cations and anions that maintain a liquid form below 100°C. ILs
have gained attention for their applications in bio-catalysis and
electrochemistry due to their high thermal stability and
versatility, also known as green solvents [1,2,3]. However,
recent studies highlight their environmental impact due to their
varying level of toxicity [4,5,6,7].

The ILs pose a hurdle because the cation-anion combinations
limit the ability to test every compound for toxicity. To address
this gap, new methods, such as QSAR (Quantitative Structure-
Activity Relationship), are being implemented [8,9]. QSAR
model uses computational power to predict toxicity using
molecular descriptors, resulting in faster and cheaper results
than laboratory work without sacrificing quality.

Moreover, random forests, support vector machines, and
gradient boosting approaches have demonstrated the ability to
accurately describe complex nonlinear correlations between the
structural characteristics of a molecular entity and toxicity.
Hence, the use of machine learning techniques in QSAR has
never been higher [10,11,12]. Moreover, molecular data in
SMILES format can be more effectively described by deep
models using convolutional neural networks (CNNs), which
automatically perform feature extraction and enhance the
model’s performance [13,14].

This study focuses on utilizing a random forest regression
model, implemented in Python!, to examine the predictive
capability of molecular descriptors for estimating the toxicity
(logeC50) of ionic liquids, accomplishing the objectives of this
study. This work aims to develop predictive models from two-
dimensional (2D) and three-dimensional (3D) molecular
descriptors. Additionally, this study seeks to utilize feature
selection tools to identify key molecular descriptors, along with
hyperparameter tuning, to enhance model reliability. The

learning/random-forest-regression-in-python/
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proposed approach focuses on predicting the toxicity of ILs and
improving the interpretability of descriptors corresponding to
toxicity. Consequently, it stimulates the creation of more
environmentally friendly and safer chemical alternatives.

This work offers a framework that is both interpretable and
grounded in existing literature, connecting prevalent QSAR
descriptors to chemically reasonable toxicity mechanisms and
provides screening recommendations for ionic liquid
candidates with reduced toxicity (see Figure 5).

I.MATERIALS and METHODS
A. Dataset acquisition

For this research, the dataset containing information on the
toxicity of ILs was obtained from literature [15]. The dataset
comprises toxicological data for 355 ILs represented as
logeC50 values, which are measured on a logarithmic scale.
Each record represents an ionic liquid in SMILES (Simplified
Molecular Input Line Entry System) format. Each entry’s
experimentally obtained logEC50 value provides a quantitative
assessment of toxicity, enabling analysis based on empirical
data. Some samples of the dataset are provided below in Table
1, to show its structure and the type of information that are
included.

Table 1: Data for lonic Liquids and their Experimental
logEC50

IL Experim
N SMILES ental

0. logeC50
1 [N+](C)(C)(CC)coCC.[Cl-] 3.59

) 0O1c4c¢(0[B-]120c3c(02)cccce3)ccecs. 1.17

CCIN+](cC)(cc)ce
3 [N+](C)(C)(Cclceceeccl)CCCCCCCCCC.[C 0.64
-]

In the current study, ILs of the dataset are characterized by their
molecular structure and associated toxicity values. The
molecular structures are represented in SMILES notation, and
their toxicity is expressed by experimental logEC50 values,
which represent half-maximal effective concentration. We
determined the 2D and 3D descriptors using the RDK:it toolkit
in Python (in particular, the functions in the Chem module)?,
representing the input vectors of the ionic liquid geometrical
and chemical structure composition, as well as their
physical/chemical molecular features. The final matrix included
all computed 2d and 3d descriptors which were successfully
calculated.

B. Dataset Preprocessing Tasks

2

https://www.rdkit.org/docs/GettingStartedInPython.ht

We preprocessed the input data to enhance its quality and to
make it suitable for use in machine learning.

+ Imputation of Missing Values: Missing values were imputed
with column-wise mean imputation using Scikit-learn's [16]
Simplelmputer module in Python . Handling missing values
was applied to the full descriptor matrix before training the
model.

« Feature Integration and Normalization [17,18]: The toxicity
dataset and molecular descriptor dataset were combined to yield
an integrated feature matrix. Normalization was not applied
either for calculated descriptors or random forest.
Standardization was implemented only for plots to be
diagnosed.

C. Model development

Since the RF repressor [19] is effective with high-dimensional
datasets, resistant to overfitting, and interpretable using feature
importance metrics, it was selected as the prediction model for
this study. The dataset was split into an 80:20 ratios (80% for
training, and 20% for testing). The test dataset was used to
evaluate the model’s prediction accuracy on new and unseen
data [20].

Hyperparameter tuning was performed using GridSearchCV
[21], targeting parameter adjustments of values such as the
maximum tree depth (the so-called max_depth parameter in
Python) and the number of estimators (the parameter
n_estimators in Python). Hyperparameters were selected with
GridSearchCV using 3-fold cross-validation on the training
split with R2 optimizing. The grid spanned n_estimators {100,
200, 300}, max_depth {None, 10, 20, 30}, min_samples_split
{2, 5,10}, and min_samples_leaf {1, 2, 4} with n_jobs = —1 and
random_state = 42. The selected configuration was
n_estimators = 300, max_depth = 10, min_samples_split = 2,
and min_samples_leaf = 1.

D. Performance Metrics

The model's prediction accuracy was assessed using the
following standard metrics.

e Mean Absolute Error (MAE): A measure of the average
magnitude of prediction errors [22].

e Root Mean Squared Error (RMSE): It gives more
emphasis to prediction errors for greater differences
[23].

e Pearson correlation coefficient (r): It measures the scale
of linear relationship between the predicted and
observed toxicity (logEC50) values [24].

e Coefficient of Determination (R?): It gives a proportion
of variance in observed values that explained by the
model [25].

ml
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E. Visualization and analysis

e Importance of features: The relative contribution of
each molecular descriptor towards the prediction of IL
toxicity was calculated based on the values of feature
importance derived using the RF model [26]. A bar plot
was created to identify the most critical features,
providing information about the significant molecular
properties accountable for toxicity predictions.

e Correlation analysis: Predictive validity of the model
was assessed by comparing the experimental and
predicted logEC50 values in a plot based on scatter. The
Pearson correlation coefficient was also calculated,
giving a numerical measure of the capacity of the model
to approximate the linear relationship between these
values [27].

III.RESULTS
A. Model Performance

RF regression model demonstrated good prediction capability
for toxicity values of ionic liquids from 2D and 3D molecular
descriptors. The following parameters were used to evaluate
the model’s performance on the test dataset, as shown in Table
2.

Table 2: Performance parameters of the model on the test
dataset.

Evaluation Metrics Value

R2 Score 0.8790
0.2776

MAE

RMSE 0.3833

Pearson Correlation

Coefficient 0.9379

In particular, our results demonstrate the model’s accuracy in
predicting toxicity using these molecular descriptors through
the ML approach. This is evident from the high linear
correlation between predicted and actual values, as shown by
the high Pearson correlation coefficient (see Table 2). The first
goal of accurate toxicity prediction of ionic liquid is supported
in Table 2. The second goal which is identifying key descriptors
is addressed by explaining the most influential descriptors
below.

B. Feature importance

The feature importance analysis showed the molecular
descriptors most important to the predictive accuracy of the
model. Among the 20 top descriptors, SMR_VSA5 and
VSA EState7 had significantly higher importance scores
compared to the others. SMR_VSA5 calculates van-der-Waals

areas for atoms that are contained within a mid-range molar-
refractivity bin, which is chosen here to positively track
exposed hydrophobic surface.

Higher values, therefore, indicate bulkier or more hydrophobic
fragments, a trend that is also seen at higher IL toxicity (due to
better penetration into the membrane).

VSA_EState7 is the sum of atom contributions for a mid-high
area bin; it connects local electronic environment with available
surface. In application, higher VSA_EState7 values mean more
electronically active surface exposed atoms as would be
expected for more intense intermolecular interactions that can
raise observed toxicity.

When  combined, these  descriptors  suggest a
hydrophobicity/accessible-surface  and  local-electronics
process, suggesting that bulk and charge-distribution properties
are the main sources of the toxicity estimates in the model. A
relative importance bar chart of the 20 most influential
descriptors is provided in Fig. 1.
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Figure 1: Bar plot of the top 20 molecular descriptors ranked
by importance.

C. Correlation between actual and predicted values

Fig. 2 is a scatter plot between observed and expected
logEC50 values. The scatter plot is highly linear along the
diagonal line (y = x) and exhibits good predictability. The
random outliers could have been a result of dataset limitations,
even though almost all the predictions, except for a few, were
close to the experimental value.
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Figure 2: Scatter plot of the observed versus predicted
logEC50 values. The diagonal line represents the baseline.

D. Model evaluation with confidence intervals

In this study, we investigated the RF model's performance
on training and test datasets, with a focus on confidence
intervals, which can provide insight into the uncertainty
and variability of model predictions for individual data
points.

E. Confidence interval for test data
Fig. 3 shows the mean of predicted and actual points for the
test set, along with a 95% confidence interval for each point.
The same analysis also highlights the spread in predictions and
indicates where the model's performance might be less
uniform.

Confidence Interval of True vs Predicted Values
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Figure 3: The 95% confidence interval of observed versus
predicted toxicities measured for the test dataset.

The critical observations are as follows:

> The ones with broad intervals indicate instances where
the model doesn't predict well Most of the data points
have tight confidence intervals, showing that the
predictions are reasonable.

F. Comparison across training and datasets

The mean of actual and predicted values for the train and test
sets, along with a 95% confidence interval for each point, is
depicted in Fig. 4.

The critical observations are as follows:

e The model is a good fit to the training data, as is
evident from the lower confidence intervals of the
training dataset.

e Asis the case when extrapolating to new data, the test
data intervals are marginally wider.

Confidence interval analysis identifies areas for optimization in
the outliers and verifies that the model performs well on training
data and reasonably well on test data.

Confidence Interval of True vs Predicted Values (Train, Validation, Test)
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Figure 4: Confidence Interval of True vs. Predicted Values for
Training and Test Datasets.

length beyond a certain point may negatively impact the
model's performance due to insufficient data.

1V.Discussion

The correlation coefficient obtained between all molecular
descriptors and IL toxicity was 0.8790, and the Pearson
correlation coefficient was 0.9379, demonstrating the high
capability of the model to predict IL toxicity from their
molecular descriptors. In addition, compared with other models
(See Table 3), the low MAE (0.2776) and RMSE (0.3833)
verify the reliability and universality of the model.
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Table 3: comparison table that benchmarks results against
representative IL toxicity QSAR studies.

Reported
Endpoint . R2 (test
Study / cell i AL unless
noted)
0.892
Zhao et
IPC-81, (MLR),
al.[,2%(;14 logEC50 304 | MLR, SVM 0.958
' (SVM)
0.8917
Wang et
IPC-81, (FNN),
aI.,[22]OZO logEC50 355 | FNN, SVM 0.9202
' (SVM)
Ahmadi CORAL
etal., IPC-81, 304 | (Monte Carlo 0.85
2022 logeC50 (validation)
QSTR)
[29].
Proposed | IPC-81, 355 Random
Model logeC50 Forest 0.879 (test)

The feature importance analysis identified molecular descriptors
critical to the predictive ability of the model. The two highest-
ranked descriptors, SMR_VSA5 and VSA_EState7, are associated
with electronic and spatial molecular properties. They are likely
to describe meaningful physicochemical interactions involved in
IL toxicity, such as lipophilicity, size, electron density, reactivity,
and polarity. The prevalence of these traits aligns with previous
research, which has also portrayed the prominence of electronic
and spatial characteristics in IL interactions with biological
systems. Our test set performance (R2 = 0.879) is consistent with
the reported range for ionic-liquid toxicity QSAR models for
comparable endpoints and assessment schemes [30,31].
Consistent with the QSAR IL literature in general, tree-based
approaches are rivaling conventional baselines: previous work
shows SVM and MLR giving good results on similar IL toxicity
tasks, against which our Random Forest result is competitive
[12,28].

In order to investigate the chemical reasonableness of salience of
SMR_VSA5 and VSA_EState7; RDKit classifies them as
surface-area-hybrid descriptors summarizing molar-refractivity-
binned van-der-Waals surface (SMR_VSA) or
electrotopological-state  values over surface-area  bins
(VSA_EState) with hydrophobic surface-exposure and local
electronic environment tied to interaction potential [32]. The
underlying electrotopological-state indices of VSA_EState are
long-established QSAR indices of historical precedent and

represent atom-level electronic and topological effects pertinent
to activity and toxicity.

For clarity, we say that cross-paper metric comparison should be
treated with caution since endpoints, descriptor sets, and split
protocols vary, thus our quantitative benchmarking is stated as
"within-range" and not superiority assertions [33].

The RF model performed as well as other recent machine
learning models, such as Meta-Ensemble for IL toxicity
prediction [34]. It is as effective as complex models in providing
a satisfactory linear correlation between experimental and
predicted toxicity values. Specifically, RF's interpretability, as
revealed through feature importance analysis, gives it a
significant advantage compared with more sophisticated models.
The appropriateness of RF for model interpretability predictive
tasks comes to the front as a result of this trade-off between
accuracy and transparency [3,4].

Though the model functioned reasonably well overall, there were
outlying data points in the scatter plot that resulted in
discrepancies in experimental and calculated values. These are
induced by missing data points in the given dataset; for example,
present noise, diversity of the structures, and physical-chemical
properties of ionic liquid molecules, or lack of significant
descriptors that could play a crucial role in predicting toxicity.
Furthermore, overreliance on the descriptors necessitates a closer
examination of their influence on the prediction of ionic liquids’
toxicity using the machine learning approaches. Below is a
schematic overview summarizing the study’s workflow.

Predicting lonic

Input Data Random

Forest
Regression
Model

2Dand 3D
molecular
descriptors

Figure 5: Conceptual summary of the QSAR workflow for
ionic-liquid toxicity prediction. Curated IL structures were
encoded as 2D and 3D RDKit descriptors, modeled with a RF
regression. Feature-importance analysis highlights
SMR_VSAS5 and VSA_EState7 among the top contributors to
the model’s estimates.
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V.Implications and Future Directions

The findings of this study hold tremendous implications for the
design of cleaner and more secure ionic liquids. This work
provides a structure-based optimization framework for ILs that
reduce environmental and biological risks by defining
molecular descriptors that have the most influence on predicting
ionic liquid toxicity.

Furthermore, the efforts may include expanding the diversity of
molecules in the dataset with ionic liquids of different physical
and chemical properties, as well as geometrical structures,
including various chemical functional groups. Furthermore,
including other descriptors, such as quantum-chemical
descriptors, could enhance the predictive performance of
machine learning approaches. Exploring ensemble or hybrid
models could further improve prediction power by improving
the algorithms. The work demonstrates the potential of applying
2D and 3D molecular descriptors, along with machine learning,
for more effective prediction of IL toxicity. The creation of
computational facilities in green chemistry facilitates the
development of environmentally friendly and safer chemical
substitutes.

V1.Conclusions

In this study, we examined the use of the RF regression model
to predict the toxicity (in logeC50 scale) of ionic liquid
molecules. The molecules were represented by their 2D and 3D
molecular descriptors.

The model was found to be predictive, as indicated by an R?
value of 0.8790, a Pearson correlation coefficient of 0.9379, and
low error values (MAE: 0.2776, RMSE: 0.3833). These
findings suggest the potential use of machine learning
approaches to model even complex chemical and physical
relationships between molecular descriptors and IL toxicity at a
desired level of accuracy.

Furthermore, feature selection analysis identified crucial
molecular descriptors (e.g., SMR_VSADS5 and VSA_EState7) as
the most critical features, based on their scores, in predicting
ILs toxicity. This is crucial in providing insights into the
electronic and structural properties that govern IL toxicity,
thereby facilitating the development of safer and greener ionic
liquids. The high correlation between predicted and
experimentally obtained values further assures the robustness
of the Random Forest model and its applicability in
cheminformatics.

Despite these results, the study has some limitations, including
missing descriptors and outliers, which can affect toxicity.
Future studies could explore the use of more sophisticated
models, such as ensemble or hybrid models, to improve
predictive accuracy and generalizability of the molecular
descriptors.

In short, this study is a contribution to green chemistry as it
presents a computational method of estimating IL toxicity.
The results opened the door to the rational design of less

harmful ionic liquids, securing their safe and sustainable
application in industry and the environment.
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