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Abstract This study introduces a neural network model 

designed for the classification of EEG signals. The model, developed 

using the Python programming language, is trained with the 

backpropagation algorithm and successfully predicts the correct 

outputs of signals. The research demonstrates that the model 

effectively predicts actions by training on EEG signal features 

recorded during hand clenching and unclenching actions. The 

accuracy of the developed neural network model was compared 

with Multilayer Perceptron (MLP), widely used in biological signal 

classification, and Long Short-Term Memory (LSTM), a low-error 

learning algorithm. The obtained results are presented in the 

Performance Analysis section. 
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I. INTRODUCTION 

Eectroencephalogram (EEG) signals are electrophysiological 

recordings used to measure brain activity. First discovered in 

1929 by Hans Berger, EEG has become a significant tool in brain 

research. EEG was one of the earliest methods to measure brain 

activity. In 1924, Hans Berger conducted experiments to 

measure electrical activity from the human brain. By 1929, 

Berger successfully recorded the brain’s electrical activity by 

placing electrodes on the human scalp, producing the first EEG 

signals. Berger discovered that EEG signals exhibit fluctuations 

in different frequencies and amplitudes, categorizing these 

fluctuations into frequency bands such as “alpha” and “beta.” 

 

Figure 1: Sample signal graphs of EEG frequency ranges. 

EEG signals are acquired by measuring brain activity via 

electrodes placed on the skin. Typically, electrodes are attached 

to a cap that ensures their proper placement on the scalp. The 

EEG device processes the electrical signals by amplifying and 

filtering them, which are then used for analysis [1]. 

EEG signals are typically observed as low-frequency and small-

amplitude waves. Different wave types correspond to different 

states of brain activity. For instance, alpha waves are observed 

during relaxation, while beta waves increase during attention-

demanding tasks. Additionally, delta and theta waves are 

prominent during sleep and some neurological disorders. Table 

1 categorizes EEG signals based on their frequency ranges, and 

Figure 1 provides example graphs of these signals [1,9]. 

 

Table 1: Frequency Ranges of EEG Signals 

Type Frequency Range (Hz) 

Delta 0.5 Hz – 3,5 Hz 

Theta 4 Hz – 7 Hz 

Alpha  8 Hz – 12 Hz 

Beta 13 Hz – 30 Hz 

Gamma 30+ Hz 

 

This study involved recording EEG signals at a sampling 

frequency of 128 Hz for 1-second intervals during hand-

clenching and unclenching actions using a portable EEG device 

designed in a previous study [2]. The signals underwent 

preprocessing and feature extraction before classification using 

a neural network model, the MLP algorithm, and the LSTM 

algorithm. The goal of this research is to convert brain signals 

generated during motor actions into meaningful data that can 

enable disadvantaged individuals to operate smart prostheses. 

This study represents the initial phase of developing advanced 

prosthetic devices.. 
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II. MATERIALS AND METHODS 

This study utilized EEG signals recorded during hand clenching 

and unclenching actions. The signals were sampled at 128 Hz. 

for 1-second intervals using a portable EEG device developed in 

a prior study. Preprocessing and feature extraction techniques 

were applied to the signals, followed by classification using an 

Artificial Neural Network (ANN) model, a Multilayer 

Perceptron (MLP), and a Long Short-Term Memory (LSTM) 

algorithm. 

To prepare the data for classification, the Fast Fourier Transform 

(FFT) was applied to the recorded signals. The FFT outputs were 

divided into 4 Hz. intervals, and statistical features such as mean, 

maximum, minimum, standard deviation, skewness, and kurtosis 

were computed for each interval. These features formed the 

dataset used for model training and validation. 

10 signals for each action (clenching and unclenching) were used 

as the training set, while 4 signals for each action were reserved 

for validation. The primary objective of this study was to 

interpret the brain signals produced during motor actions, 

enabling disadvantaged individuals to operate smart prostheses 

in the future. 

 

A.  Feature Extraction 

 

Feature extraction involved processing the 1-second EEG 

signals captured during clenching and unclenching movements. 

These signals were transformed using the Fast Fourier 

Transform (FFT) and segmented into 4 Hz. frequency bands. For 

each segment, the following six statistical features were 

computed[1]: 

1.Mean: The average value of the data within the 4 Hz. block. 

2.Maximum Value: The highest data point in the block. 

3.Minimum Value: The lowest data point in the block. 

4.Standard Deviation: Calculated using the formula (Equation 1) 

[3]: 
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(Eq. 

1) 

 

Here: 

• 𝑁  is the number of elements in the data set. 

• 𝑥𝑖  is the value at index i. 

• �̅�  is the mean of the dataset. 

 

5.Skewness: A measure of the asymmetry of the data 

distribution, calculated as: 

(Equation 2) [3]. 
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2) 

 

In this equation: 

• �̅�  represents the sample mean. 

• 𝑥𝑖  is the value at index i. 

• 𝑚3  is the third central moment of the sample. 

• 𝑚2  is the sample standard deviation. 

 

6.Kurtosis: A measure of the sharpness of the data distribution, 

determined using: (Equation 3) [3]. 
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(Eq. 

3) 

 

In this formula: 

• 𝑚4 represents the fourth moment around the mean. 

• 𝑚2 represents the second moment around the mean. 

 

These extracted features provided a comprehensive 

representation of the frequency-domain characteristics of the 

EEG signals. The feature set was then used as input for the 

machine learning models to classify the motor actions. 

 

Fast Fourier Transform (FFT) 

The Fourier transform is a mathematical operation that reveals 

the frequency components of a signal. Signals often consist of 

amplitude and frequency variations over time, and the Fourier 

transform decomposes these signals into their frequency 

components. However, directly applying the Fourier transform 

can be computationally slow in converting signals from the time 

domain to the frequency domain. To address this, the Fast 

Fourier Transform (FFT) algorithm was developed, providing a 

faster alternative by utilizing computational shortcuts and 

symmetry properties. 

FFT is widely used in audio processing, image processing, data 

compression, and spectral analysis. It analyzes the spectral 

content of signals, identifies frequency components, and 

performs filtering and transformations in the frequency domain. 
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 The mathematical representation of the FFT is as follows: 

 

X_k=∑_(n=0)^(N-1)▒〖x(n)^(-i(2π×k×n/N) ) 〗 (Eq. 4) 

 

Here, 𝑁 represents the length of the sequence, 𝑥(𝑛) denotes the 

𝑛th element of the input signal, and X_k refers to the kth 

component in the frequency domain. In this equation, the values 

of n and k range from 0 to N – 1. 

The FFT algorithm uses this equation to efficiently compute the 

Discrete Fourier Transform (DFT) of a sequence. It achieves this 

by recursively dividing the sequence into smaller subsequences, 

where the length of the sequence is a power of two. These 

smaller subsequences are used to calculate the DFTs of shorter 

segments, which are then combined to obtain the DFT of the 

original sequenceT algorithm performs this division and 

combination process with a complexity of 𝑂(𝑁 log 𝑁). This 

ensures that as the data size increases, the computation time 

grows relatively slowly. Due to this efficiency, FFT is widely 

preferred for fast frequency analysis of large datasets. 

 

B.  Classification Approaches 

Neural Network Model 

The artificial neural network (ANN) model was developed using 

the Python programming language. The model consists of 96 

input nodes and one output layer. The sigmoid activation 

function was employed, and weights were initialized randomly. 

Training was performed using the backpropagation algorithm. 

The ANN model serves as a fundamental approach for 

classifying EEG signals. The specific ANN model used in this 

study was developed using Python and involves the following 

steps: 

i. Dataset Definition 

In this study, EEG signals recorded during 1-second intervals of 

hand-clenching and unclenching actions were processed to 

extract features. Each signal resulted in a total of 96 features, 

which were used as inputs to the ANN model. 

 

ii. Model Construction 

The model consists of one input layer, three hidden layers, and 

one output layer. Specifically, the layers include: 

•Input Layer: 96 nodes representing the extracted features. 

•Hidden Layers: 64, 64, and 32 nodes, respectively. 

•Output Layer: 1 node. 

The bias terms (e1, e2, e3, e4) are included to adjust the model. 

Initially, the weights connecting the nodes were initialized 

randomly. These weights represent connections between the 

input layer and hidden layers, as well as between hidden layers 

and the output layer. The dimensions of the weights were defined 

to match the model structure. 

 

iii. Feedforward Process 

The input dataset is fed into the ANN model. The inputs are 

multiplied by the weights and processed through the sigmoid 

activation function (Equation 5) to compute the outputs in the 

hidden layers. These outputs are then multiplied by subsequent 

weights and processed through the sigmoid function again to 

produce the final output at the output layer. This process results 

in the ANN’s predictions. 

 

iv. Backpropagation Algorithm 

Backpropagation calculates the error between the predicted 

outputs and the actual outputs, adjusting the network weights 

accordingly. 

1.The error at the output layer is computed first. 

2.This error is propagated backward to the hidden layers to 

calculate their respective errors. 

3.The computed errors are used to calculate delta values for 

updating weights and biases. 

 

v. Weight and Bias Updates 

Using the delta values obtained during backpropagation, weights 

and biases are updated to reduce the error. The updates follow 

the gradient descent principle, adjusting weights to minimize 

error. A defined learning rate is used for these updates. 

 

vi. Training Loop 

Steps 3-5 are repeated for all examples in the dataset. This 

ensures the network is trained using the entire dataset. The 

training process is repeated for a specified number of iterations 

(epochs), with each epoch representing one complete pass 

through the dataset. 

 

This structured process allows the ANN model to learn from the 

EEG signal data and classify the motor actions effectively. 

 

𝑓(𝑥) =
1

(1 + 𝑒−𝑥)
 

(Eq. 

5) 
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Figure 2: Layers and nodes of the created model. 

𝑛𝑒𝑡ℎ = 𝑎 × 𝑔1 + 𝑎 × 𝑔2 + ⋯ + 𝑎 × 𝑔96

+ 𝑒1 

(Eq. 6) 

ℎ = 𝑓(𝑛𝑒𝑡ℎ) (Eq. 7) 

𝐸ç  =  [𝑅𝑒𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡] –  ç (Eq. 8) 

𝛿ç = 𝐸ç × 𝑓′(ç) (Eq. 9) 

𝐸ℎ = 𝛿ç × 𝑎  (Eq. 10) 

𝛿ℎ = 𝐸ℎ × 𝑓′(ℎ) (Eq. 11) 

𝑎ç = 𝑎ç + 𝑛𝑒𝑡ℎ × 𝛿ç (Eq. 12) 

𝑎ℎ = 𝑎ℎ + 𝑔 × 𝛿ℎ (Eq. 13) 

 

In the feedforward process, the numerical value for each node in 

the hidden layer is obtained by applying the sigmoid function to 

the  net_h  value, as shown in Equation 6. This process is 

similarly applied to compute the numerical value of the output 

node (Equation 7). 

During backpropagation, the difference between the obtained 

output value and the actual output is calculated as the error 

(Equation 8). This error is then used to recompute the weights 

and hidden nodes. 

To compute the error at the hidden nodes, a delta value for the 

output node (δ_ç) is first determined (Equation 9). This delta is 

multiplied by the weight associated with the corresponding node 

connection (Equation 10). Similarly, to recompute the value of a 

weight, a delta value for the hidden node (δ_h) is calculated 

(Equation 11). 

The computed numerical values are used to update the weights 

between the output layer and the hidden layer (Equation 12) as 

well as the weights between the hidden layer and the input layer 

(Equation 13). 

This iterative process is repeated for each weight and node across 

the specified number of iterations [5]. 

In the feedforward process, the numerical value for each node in 

the hidden layer is obtained by applying the sigmoid function to 

the  net_h  value, as shown in Equation 6. This process is 

similarly applied to compute the numerical value of the output 

node (Equation 7). 

During backpropagation, the difference between the obtained 

output value and the actual output is calculated as the error 

(Equation 8). This error is then used to recompute the weights 

and hidden nodes. 

To compute the error at the hidden nodes, a delta value for the 

output node (δ_ç) is first determined (Equation 9). This delta is 

multiplied by the weight associated with the corresponding node 

connection (Equation 10). Similarly, to recompute the value of a 

weight, a delta value for the hidden node (δ_h) is calculated 

(Equation 11). 

The computed numerical values are used to update the weights 

between the output layer and the hidden layer (Equation 12) as 

well as the weights between the hidden layer and the input layer 

(Equation 13). 

This iterative process is repeated for each weight and node across 

the specified number of iterations [5]. 

 

Multilayer Perceptron (MLP) 

A Multilayer Perceptron (MLP) is a type of fully connected 

feedforward artificial neural network (ANN). An MLP consists 

of at least three layers: an input layer, a hidden layer, and an 

output layer. Each node, except for those in the input layer, is a 

neuron that applies a non-linear activation function. During the 

training process, a supervised learning technique called 

backpropagation is utilized. MLP differs from a simple 

perceptron by incorporating multiple layers and non-linear 

activation functions, which allows it to distinguish between data 

that is not linearly separables first passed to the input layer and 

then transferred to the first hidden layer. The hidden layers can 

be designed in various configurations depending on the 

complexity of the problem and the desired error rate. The output 

of each layer is passed as input to the next layer. Data emerging 

from the final hidden layer is transmitted to the output layer, 

where it is processed to determine the network’s final output. 

Figure 3 illustrates a four-layer MLP model with two input 

nodes, one output node, and two hidden layers [6]. 

In MLPs, some neurons use non-linear activation functions to 

model the action potentials or firing frequencies of biological 

neurons. Two commonly used activation functions are sigmoid 

functions, defined in Equations 14 and 15. The first equation 

represents a hyperbolic tangent function that ranges from -1 to 

1, while the second represents a logistic function ranging from 0 

to 1. Here, y_i  denotes the output of the ith neuron, and v_i  

represents the weighted sum of its input connections. 
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Figure 3: Four-layer MLP structure. 

 

 

𝑦(𝑣𝑖) = tanh(𝑣𝑖) (Eq. 14) 

𝑦(𝑣𝑖) = (1 + 𝑒−𝑣𝑖)−1 (Eq. 15) 

 

Long Short-Term Mermory (LSTM) 

Developed in the late 1990s, Long Short-Term Memory (LSTM) 

is a specialized type of Recurrent Neural Network (RNN) 

designed for modeling sequential data. In an RNN, each data 

input is analyzed iteratively, taking into account the value of the 

previous output. However, despite claims that information from 

earlier time steps is considered, the architecture often struggles 

with the vanishing or exploding gradient problem, making it 

challenging to retain long-term dependencies. To address this 

issue, the LSTM architecture was developed to remember long-

term information effectivelyTM architecture, illustrated in 

Figure 4, consists of repeating sequential blocks. Generally, the 

structure includes three key layers: the forget layer, the input 

layer, and the output layer [7]. 

In the LSTM architecture, the decision on which information to 

discard is made using the current input  X_t and the previous 

hidden state  h_t-1. This process occurs in the forget layer (f_t), 

as defined by Equation 16, where the sigmoid activation function 

is applied to determine the forget gate’s output. 

 

ft  =  σ(Wf,x  ×  Xt  +  Wf,h  × hf ) (Eq. 16) 

 

 

Figure 4: Long short-term memory architectural structure. 

In the second step, the input layer determines new information. 

Initially, the information is updated using the sigmoid function, 

as described in Equation 17 (i_t). Then, new information is 

generated using the tanh function, as defined in Equation 18, 

which determines the candidate values for the state update. 

 

𝑖𝑡  =  𝜎(𝑊𝑖,𝑥  ×  𝑋𝑡  +  𝑊𝑖,ℎ  ×  ℎ𝑡 − 1 + 𝑏𝑖) (Eq. 17) 

𝐶𝑡  =  𝑡𝑎𝑛ℎ(𝑊𝑐,𝑥  ×  𝑋𝑡  +  𝑊𝑐,ℎ  ×  ℎ𝑡 − 1 

+  𝑏𝑐) 
(Eq. 18) 

 

Finally, the output data is obtained in the output layer using 

Equations 19 and 20. These equations define the process of 

generating the LSTM’s output based on the updated cell state 

and the hidden state. 

 

𝑜𝑡  =  𝜎(𝑊𝑜,𝑥   ×  𝑋𝑡  +  𝑊𝑜,ℎ  ×  ℎ𝑡 − 1 +  𝑏𝑜) (Eq. 19) 

ℎ𝑡  =  𝑜𝑡  ×  𝑡𝑎𝑛ℎ(𝐶𝑡) (Eq. 20) 

  

The process described in the equations is repeated iteratively. 

The weight parameters (W) and bias parameters (b) are 

optimized by the model to minimize the difference between the 

actual training values and the LSTM’s output values [8]. 

 

III. RESULTS 

The neural network model developed in Python demonstrated 

effective classification of EEG signals. Figures 5 and 6 depict 

sample graphs of EEG signals recorded during fist-clenching 

and unclenching actions, respectively. 

 

 

 

Figure 5: Signals recorded during the fist-clenching action. 
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Figure 6: Signals recorded during opening of a clenched fist. 

 

The features extracted from the signals constituted the input 

layer nodes of the created ANN model, LSTM model, and MLP 

model. Table 2 presents the parameters used for the three models 

and their corresponding performance results. Based on these 

results, the parameters yielding the most successful outcomes 

were identified as the final parameters of the proposed ANN 

model. 

 

The learning rate of the ANN model was determined as 0.05 after 

a series of trials. Figure 7 shows the loss curves obtained from 

running the model three times with 1000 iterations. The results 

indicate that the error values of the model began to optimize after 

400 iterations. 

Figure 8 shows the accuracy graph obtained from running the 

LSTM algorithm for 700 iterations.The final accuracy was 

measured at 0.8800, which is considered an acceptable level for 

classification performance.  

Figure 9 shows the accuracy and loss values of best MLP model. 

For the data set used, it was observed that the best activation 

function in the MLP algorithm was Tanh. In the LSTM and ANN 

algorithms, the best results were obtained using the Sigmoid 

activation function. 

Table 3 presents comparing the final results of accuracy, Mean 

Squared Error (MSE), Mean Absolute Percentage Error 

(MAPE), Mean Absolute Error (MAE), and Root Mean Squared 

Error (RMSE) values obtained from all the algorithms..

 

Table 2. Parameters used in algorithms and results. 

Run 
Activation 

Function 

Hidden 

Layers 
Iterations 

Learning 

Rate 

MLP Loss-

Accuracy 

LSTM 

Loss-

Accuracy 

ANN Loss-

Accuracy 

1 Relu (32,32) 500 0.5 7.11 – 0.5 0.81 – 0.5 0.5 – 0.6 

2 Relu (32,64) 500 0.5 0.7 – 0.63 0.46 – 0.66 0.48 – 0.6 

3 Tanh (64,32,32) 700 0.1 0.69 – 0.63 0.7 – 0.66 0.32 – 0.74 

4 Tanh (64,64,32) 1000 0.1 0.0 – 1.0 0.47 – 0.78 0.14 – 0.8 

5 Sigmoid (64,64,32) 1000 0.05 0.36 – 0.92  0.08 – 0.88 0.005 – 0.97 
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Figure 7: Loss values of the ANN model in 1000 iterations. 

 

Figure 8: Accuracy rates and error/loss values obtained with the LSTM algorithm in 700 iterations. 

 

Table 3. Final accuracy comparisons of algorithms. 

 Accuracy MSE MAPE MAE RMSE 

ANN 0,97 0,005 0,01 0,01 0,05 

LSTM 0,84 0,082 0,15 0,15 0,28 

MLP 1 0,0 0,0 0,0 0,0 
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IV. CONCLUSIONS  

This study demonstrates the effective use of neural network 

models for EEG signal classification. Neural networks are 

powerful tools for solving complex problems and can 

successfully classify intricate data like EEG signals. 

The results indicate high accuracy rates for all algorithms used. 

Feature extraction techniques applied to EEG signals produced 

reliable outcomes, affirming their potential for similar 

applications in the future. Neural networks, with their 

adaptability and precision, hold promise for solving 

increasingly complex problems. 
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