
40

Journal of Intelligent Systems with Applications 2024; 7(2): 40-47

Classification of EEG Signals Using a Neural

Network Model and Comparison with MLP and

LSTM Algorithms

Enver Kaan Alptürk1*, Yakup Kutlu1

1Department of Computer Engineering, Iskenderun Technical University, Turkey

Emails: ealpturk.lee22@iste.edu.tr, yakup.kutlu@iste.edu.tr

*Corresponding author.

Abstract This study introduces a neural network model

designed for the classification of EEG signals. The model, developed

using the Python programming language, is trained with the

backpropagation algorithm and successfully predicts the correct

outputs of signals. The research demonstrates that the model

effectively predicts actions by training on EEG signal features

recorded during hand clenching and unclenching actions. The

accuracy of the developed neural network model was compared

with Multilayer Perceptron (MLP), widely used in biological signal

classification, and Long Short-Term Memory (LSTM), a low-error

learning algorithm. The obtained results are presented in the

Performance Analysis section.

Keywords EEG, Artificial Neural Networks, FFT, MLP,

LSTM.

I. INTRODUCTION

Eectroencephalogram (EEG) signals are electrophysiological

recordings used to measure brain activity. First discovered in

1929 by Hans Berger, EEG has become a significant tool in brain

research. EEG was one of the earliest methods to measure brain

activity. In 1924, Hans Berger conducted experiments to

measure electrical activity from the human brain. By 1929,

Berger successfully recorded the brain’s electrical activity by

placing electrodes on the human scalp, producing the first EEG

signals. Berger discovered that EEG signals exhibit fluctuations

in different frequencies and amplitudes, categorizing these

fluctuations into frequency bands such as “alpha” and “beta.”

Figure 1: Sample signal graphs of EEG frequency ranges.

EEG signals are acquired by measuring brain activity via

electrodes placed on the skin. Typically, electrodes are attached

to a cap that ensures their proper placement on the scalp. The

EEG device processes the electrical signals by amplifying and

filtering them, which are then used for analysis [1].

EEG signals are typically observed as low-frequency and small-

amplitude waves. Different wave types correspond to different

states of brain activity. For instance, alpha waves are observed

during relaxation, while beta waves increase during attention-

demanding tasks. Additionally, delta and theta waves are

prominent during sleep and some neurological disorders. Table

1 categorizes EEG signals based on their frequency ranges, and

Figure 1 provides example graphs of these signals [1,9].

Table 1: Frequency Ranges of EEG Signals

Type Frequency Range (Hz)

Delta 0.5 Hz – 3,5 Hz

Theta 4 Hz – 7 Hz

Alpha 8 Hz – 12 Hz

Beta 13 Hz – 30 Hz

Gamma 30+ Hz

This study involved recording EEG signals at a sampling

frequency of 128 Hz for 1-second intervals during hand-

clenching and unclenching actions using a portable EEG device

designed in a previous study [2]. The signals underwent

preprocessing and feature extraction before classification using

a neural network model, the MLP algorithm, and the LSTM

algorithm. The goal of this research is to convert brain signals

generated during motor actions into meaningful data that can

enable disadvantaged individuals to operate smart prostheses.

This study represents the initial phase of developing advanced

prosthetic devices..

41

Journal of Intelligent Systems with Applications 2024; 7(2): 40-47

II. MATERIALS AND METHODS

This study utilized EEG signals recorded during hand clenching

and unclenching actions. The signals were sampled at 128 Hz.

for 1-second intervals using a portable EEG device developed in

a prior study. Preprocessing and feature extraction techniques

were applied to the signals, followed by classification using an

Artificial Neural Network (ANN) model, a Multilayer

Perceptron (MLP), and a Long Short-Term Memory (LSTM)

algorithm.

To prepare the data for classification, the Fast Fourier Transform

(FFT) was applied to the recorded signals. The FFT outputs were

divided into 4 Hz. intervals, and statistical features such as mean,

maximum, minimum, standard deviation, skewness, and kurtosis

were computed for each interval. These features formed the

dataset used for model training and validation.

10 signals for each action (clenching and unclenching) were used

as the training set, while 4 signals for each action were reserved

for validation. The primary objective of this study was to

interpret the brain signals produced during motor actions,

enabling disadvantaged individuals to operate smart prostheses

in the future.

A. Feature Extraction

Feature extraction involved processing the 1-second EEG

signals captured during clenching and unclenching movements.

These signals were transformed using the Fast Fourier

Transform (FFT) and segmented into 4 Hz. frequency bands. For

each segment, the following six statistical features were

computed[1]:

1.Mean: The average value of the data within the 4 Hz. block.

2.Maximum Value: The highest data point in the block.

3.Minimum Value: The lowest data point in the block.

4.Standard Deviation: Calculated using the formula (Equation 1)

[3]:

𝜎 = √
1

n
∑(𝑥𝑖 + �̅�)2

𝑛

𝑖=1

(Eq.

1)

Here:

• 𝑁 is the number of elements in the data set.

• 𝑥𝑖 is the value at index i.

• �̅� is the mean of the dataset.

5.Skewness: A measure of the asymmetry of the data

distribution, calculated as:

(Equation 2) [3].

𝑔1 =
𝑚3

𝑚2

3
2

=
√𝑛 ∑ (𝑥𝑖 + �̅�)2𝑛

𝑖=1

(∑ (𝑥𝑖 + �̅�)2𝑛
𝑖=1)

3
2

 (Eq.

2)

In this equation:

• �̅� represents the sample mean.

• 𝑥𝑖 is the value at index i.

• 𝑚3 is the third central moment of the sample.

• 𝑚2 is the sample standard deviation.

6.Kurtosis: A measure of the sharpness of the data distribution,

determined using: (Equation 3) [3].

𝑔2 =
𝑚4

𝑚2
2 − 3 =

𝑛 ∑ (𝑥𝑖 + �̅�)4𝑛
𝑖=1

(∑ (𝑥𝑖 + �̅�)2𝑛
𝑖=1)2

− 3
(Eq.

3)

In this formula:

• 𝑚4 represents the fourth moment around the mean.

• 𝑚2 represents the second moment around the mean.

These extracted features provided a comprehensive

representation of the frequency-domain characteristics of the

EEG signals. The feature set was then used as input for the

machine learning models to classify the motor actions.

Fast Fourier Transform (FFT)

The Fourier transform is a mathematical operation that reveals

the frequency components of a signal. Signals often consist of

amplitude and frequency variations over time, and the Fourier

transform decomposes these signals into their frequency

components. However, directly applying the Fourier transform

can be computationally slow in converting signals from the time

domain to the frequency domain. To address this, the Fast

Fourier Transform (FFT) algorithm was developed, providing a

faster alternative by utilizing computational shortcuts and

symmetry properties.

FFT is widely used in audio processing, image processing, data

compression, and spectral analysis. It analyzes the spectral

content of signals, identifies frequency components, and

performs filtering and transformations in the frequency domain.

42

Journal of Intelligent Systems with Applications 2024; 7(2): 40-47

 The mathematical representation of the FFT is as follows:

X_k=∑_(n=0)^(N-1)▒〖x(n)^(-i(2π×k×n/N)) 〗 (Eq. 4)

Here, 𝑁 represents the length of the sequence, 𝑥(𝑛) denotes the

𝑛th element of the input signal, and X_k refers to the kth

component in the frequency domain. In this equation, the values

of n and k range from 0 to N – 1.

The FFT algorithm uses this equation to efficiently compute the

Discrete Fourier Transform (DFT) of a sequence. It achieves this

by recursively dividing the sequence into smaller subsequences,

where the length of the sequence is a power of two. These

smaller subsequences are used to calculate the DFTs of shorter

segments, which are then combined to obtain the DFT of the

original sequenceT algorithm performs this division and

combination process with a complexity of 𝑂(𝑁 log 𝑁). This

ensures that as the data size increases, the computation time

grows relatively slowly. Due to this efficiency, FFT is widely

preferred for fast frequency analysis of large datasets.

B. Classification Approaches

Neural Network Model

The artificial neural network (ANN) model was developed using

the Python programming language. The model consists of 96

input nodes and one output layer. The sigmoid activation

function was employed, and weights were initialized randomly.

Training was performed using the backpropagation algorithm.

The ANN model serves as a fundamental approach for

classifying EEG signals. The specific ANN model used in this

study was developed using Python and involves the following

steps:

i. Dataset Definition

In this study, EEG signals recorded during 1-second intervals of

hand-clenching and unclenching actions were processed to

extract features. Each signal resulted in a total of 96 features,

which were used as inputs to the ANN model.

ii. Model Construction

The model consists of one input layer, three hidden layers, and

one output layer. Specifically, the layers include:

•Input Layer: 96 nodes representing the extracted features.

•Hidden Layers: 64, 64, and 32 nodes, respectively.

•Output Layer: 1 node.

The bias terms (e1, e2, e3, e4) are included to adjust the model.

Initially, the weights connecting the nodes were initialized

randomly. These weights represent connections between the

input layer and hidden layers, as well as between hidden layers

and the output layer. The dimensions of the weights were defined

to match the model structure.

iii. Feedforward Process

The input dataset is fed into the ANN model. The inputs are

multiplied by the weights and processed through the sigmoid

activation function (Equation 5) to compute the outputs in the

hidden layers. These outputs are then multiplied by subsequent

weights and processed through the sigmoid function again to

produce the final output at the output layer. This process results

in the ANN’s predictions.

iv. Backpropagation Algorithm

Backpropagation calculates the error between the predicted

outputs and the actual outputs, adjusting the network weights

accordingly.

1.The error at the output layer is computed first.

2.This error is propagated backward to the hidden layers to

calculate their respective errors.

3.The computed errors are used to calculate delta values for

updating weights and biases.

v. Weight and Bias Updates

Using the delta values obtained during backpropagation, weights

and biases are updated to reduce the error. The updates follow

the gradient descent principle, adjusting weights to minimize

error. A defined learning rate is used for these updates.

vi. Training Loop

Steps 3-5 are repeated for all examples in the dataset. This

ensures the network is trained using the entire dataset. The

training process is repeated for a specified number of iterations

(epochs), with each epoch representing one complete pass

through the dataset.

This structured process allows the ANN model to learn from the

EEG signal data and classify the motor actions effectively.

𝑓(𝑥) =
1

(1 + 𝑒−𝑥)

(Eq.

5)

43

Journal of Intelligent Systems with Applications 2024; 7(2): 40-47

Figure 2: Layers and nodes of the created model.

𝑛𝑒𝑡ℎ = 𝑎 × 𝑔1 + 𝑎 × 𝑔2 + ⋯ + 𝑎 × 𝑔96

+ 𝑒1

(Eq. 6)

ℎ = 𝑓(𝑛𝑒𝑡ℎ) (Eq. 7)

𝐸ç = [𝑅𝑒𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡] – ç (Eq. 8)

𝛿ç = 𝐸ç × 𝑓′(ç) (Eq. 9)

𝐸ℎ = 𝛿ç × 𝑎 (Eq. 10)

𝛿ℎ = 𝐸ℎ × 𝑓′(ℎ) (Eq. 11)

𝑎ç = 𝑎ç + 𝑛𝑒𝑡ℎ × 𝛿ç (Eq. 12)

𝑎ℎ = 𝑎ℎ + 𝑔 × 𝛿ℎ (Eq. 13)

In the feedforward process, the numerical value for each node in

the hidden layer is obtained by applying the sigmoid function to

the net_h value, as shown in Equation 6. This process is

similarly applied to compute the numerical value of the output

node (Equation 7).

During backpropagation, the difference between the obtained

output value and the actual output is calculated as the error

(Equation 8). This error is then used to recompute the weights

and hidden nodes.

To compute the error at the hidden nodes, a delta value for the

output node (δ_ç) is first determined (Equation 9). This delta is

multiplied by the weight associated with the corresponding node

connection (Equation 10). Similarly, to recompute the value of a

weight, a delta value for the hidden node (δ_h) is calculated

(Equation 11).

The computed numerical values are used to update the weights

between the output layer and the hidden layer (Equation 12) as

well as the weights between the hidden layer and the input layer

(Equation 13).

This iterative process is repeated for each weight and node across

the specified number of iterations [5].

In the feedforward process, the numerical value for each node in

the hidden layer is obtained by applying the sigmoid function to

the net_h value, as shown in Equation 6. This process is

similarly applied to compute the numerical value of the output

node (Equation 7).

During backpropagation, the difference between the obtained

output value and the actual output is calculated as the error

(Equation 8). This error is then used to recompute the weights

and hidden nodes.

To compute the error at the hidden nodes, a delta value for the

output node (δ_ç) is first determined (Equation 9). This delta is

multiplied by the weight associated with the corresponding node

connection (Equation 10). Similarly, to recompute the value of a

weight, a delta value for the hidden node (δ_h) is calculated

(Equation 11).

The computed numerical values are used to update the weights

between the output layer and the hidden layer (Equation 12) as

well as the weights between the hidden layer and the input layer

(Equation 13).

This iterative process is repeated for each weight and node across

the specified number of iterations [5].

Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) is a type of fully connected

feedforward artificial neural network (ANN). An MLP consists

of at least three layers: an input layer, a hidden layer, and an

output layer. Each node, except for those in the input layer, is a

neuron that applies a non-linear activation function. During the

training process, a supervised learning technique called

backpropagation is utilized. MLP differs from a simple

perceptron by incorporating multiple layers and non-linear

activation functions, which allows it to distinguish between data

that is not linearly separables first passed to the input layer and

then transferred to the first hidden layer. The hidden layers can

be designed in various configurations depending on the

complexity of the problem and the desired error rate. The output

of each layer is passed as input to the next layer. Data emerging

from the final hidden layer is transmitted to the output layer,

where it is processed to determine the network’s final output.

Figure 3 illustrates a four-layer MLP model with two input

nodes, one output node, and two hidden layers [6].

In MLPs, some neurons use non-linear activation functions to

model the action potentials or firing frequencies of biological

neurons. Two commonly used activation functions are sigmoid

functions, defined in Equations 14 and 15. The first equation

represents a hyperbolic tangent function that ranges from -1 to

1, while the second represents a logistic function ranging from 0

to 1. Here, y_i denotes the output of the ith neuron, and v_i

represents the weighted sum of its input connections.

44

Journal of Intelligent Systems with Applications 2024; 7(2): 40-47

Figure 3: Four-layer MLP structure.

𝑦(𝑣𝑖) = tanh(𝑣𝑖) (Eq. 14)

𝑦(𝑣𝑖) = (1 + 𝑒−𝑣𝑖)−1 (Eq. 15)

Long Short-Term Mermory (LSTM)

Developed in the late 1990s, Long Short-Term Memory (LSTM)

is a specialized type of Recurrent Neural Network (RNN)

designed for modeling sequential data. In an RNN, each data

input is analyzed iteratively, taking into account the value of the

previous output. However, despite claims that information from

earlier time steps is considered, the architecture often struggles

with the vanishing or exploding gradient problem, making it

challenging to retain long-term dependencies. To address this

issue, the LSTM architecture was developed to remember long-

term information effectivelyTM architecture, illustrated in

Figure 4, consists of repeating sequential blocks. Generally, the

structure includes three key layers: the forget layer, the input

layer, and the output layer [7].

In the LSTM architecture, the decision on which information to

discard is made using the current input X_t and the previous

hidden state h_t-1. This process occurs in the forget layer (f_t),

as defined by Equation 16, where the sigmoid activation function

is applied to determine the forget gate’s output.

ft = σ(Wf,x × Xt + Wf,h × hf) (Eq. 16)

Figure 4: Long short-term memory architectural structure.

In the second step, the input layer determines new information.

Initially, the information is updated using the sigmoid function,

as described in Equation 17 (i_t). Then, new information is

generated using the tanh function, as defined in Equation 18,

which determines the candidate values for the state update.

𝑖𝑡 = 𝜎(𝑊𝑖,𝑥 × 𝑋𝑡 + 𝑊𝑖,ℎ × ℎ𝑡 − 1 + 𝑏𝑖) (Eq. 17)

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐,𝑥 × 𝑋𝑡 + 𝑊𝑐,ℎ × ℎ𝑡 − 1

+ 𝑏𝑐)
(Eq. 18)

Finally, the output data is obtained in the output layer using

Equations 19 and 20. These equations define the process of

generating the LSTM’s output based on the updated cell state

and the hidden state.

𝑜𝑡 = 𝜎(𝑊𝑜,𝑥 × 𝑋𝑡 + 𝑊𝑜,ℎ × ℎ𝑡 − 1 + 𝑏𝑜) (Eq. 19)

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) (Eq. 20)

The process described in the equations is repeated iteratively.

The weight parameters (W) and bias parameters (b) are

optimized by the model to minimize the difference between the

actual training values and the LSTM’s output values [8].

III. RESULTS

The neural network model developed in Python demonstrated

effective classification of EEG signals. Figures 5 and 6 depict

sample graphs of EEG signals recorded during fist-clenching

and unclenching actions, respectively.

Figure 5: Signals recorded during the fist-clenching action.

45

Journal of Intelligent Systems with Applications 2024; 7(2): 40-47

Figure 6: Signals recorded during opening of a clenched fist.

The features extracted from the signals constituted the input

layer nodes of the created ANN model, LSTM model, and MLP

model. Table 2 presents the parameters used for the three models

and their corresponding performance results. Based on these

results, the parameters yielding the most successful outcomes

were identified as the final parameters of the proposed ANN

model.

The learning rate of the ANN model was determined as 0.05 after

a series of trials. Figure 7 shows the loss curves obtained from

running the model three times with 1000 iterations. The results

indicate that the error values of the model began to optimize after

400 iterations.

Figure 8 shows the accuracy graph obtained from running the

LSTM algorithm for 700 iterations.The final accuracy was

measured at 0.8800, which is considered an acceptable level for

classification performance.

Figure 9 shows the accuracy and loss values of best MLP model.

For the data set used, it was observed that the best activation

function in the MLP algorithm was Tanh. In the LSTM and ANN

algorithms, the best results were obtained using the Sigmoid

activation function.

Table 3 presents comparing the final results of accuracy, Mean

Squared Error (MSE), Mean Absolute Percentage Error

(MAPE), Mean Absolute Error (MAE), and Root Mean Squared

Error (RMSE) values obtained from all the algorithms..

Table 2. Parameters used in algorithms and results.

Run
Activation

Function

Hidden

Layers
Iterations

Learning

Rate

MLP Loss-

Accuracy

LSTM

Loss-

Accuracy

ANN Loss-

Accuracy

1 Relu (32,32) 500 0.5 7.11 – 0.5 0.81 – 0.5 0.5 – 0.6

2 Relu (32,64) 500 0.5 0.7 – 0.63 0.46 – 0.66 0.48 – 0.6

3 Tanh (64,32,32) 700 0.1 0.69 – 0.63 0.7 – 0.66 0.32 – 0.74

4 Tanh (64,64,32) 1000 0.1 0.0 – 1.0 0.47 – 0.78 0.14 – 0.8

5 Sigmoid (64,64,32) 1000 0.05 0.36 – 0.92 0.08 – 0.88 0.005 – 0.97

46

Journal of Intelligent Systems with Applications 2024; 7(2): 40-47

Figure 7: Loss values of the ANN model in 1000 iterations.

Figure 8: Accuracy rates and error/loss values obtained with the LSTM algorithm in 700 iterations.

Table 3. Final accuracy comparisons of algorithms.

 Accuracy MSE MAPE MAE RMSE

ANN 0,97 0,005 0,01 0,01 0,05

LSTM 0,84 0,082 0,15 0,15 0,28

MLP 1 0,0 0,0 0,0 0,0

47

Journal of Intelligent Systems with Applications 2024; 7(2): 40-47

IV. CONCLUSIONS

This study demonstrates the effective use of neural network

models for EEG signal classification. Neural networks are

powerful tools for solving complex problems and can

successfully classify intricate data like EEG signals.

The results indicate high accuracy rates for all algorithms used.

Feature extraction techniques applied to EEG signals produced

reliable outcomes, affirming their potential for similar

applications in the future. Neural networks, with their

adaptability and precision, hold promise for solving

increasingly complex problems.

REFERENCES

[1] Kutlu, Y., Yayik, A., Yildirim, E., & Yildirim, S. (2015).

Orthogonal extreme learning machine based p300 visual

event-related BCI. In Neural Information Processing:

22nd International Conference, ICONIP 2015, Istanbul,

Turkey, November 9-12, 2015, Proceedings, Part II 22

(pp. 284-291). Springer International Publishing..

 [2] Alptürk, E. K. (2022) Taşınabilir EEG cihazı tasarımı ve

uygulamaları (Yüksek Lisans Tezi), Hatay: İskenderun

Teknik Üniversitesi, 2022.

[3] M. R. Spiegel ve L. J. Stephens, Schaum's outline of

theory and problems of statistics, Erlangga, 1999.

[4] M. T. Heideman, D. H. Johnson ve C. S. Burrus, «Gauss

and the history of the fast Fourier transform,» IEEE ASSP

Magazine, cilt 1, no. 4, pp. 14-21, 1984.

[5] M. Mazur, «A Step by Step Backpropagation Example,»

17 03 2015. [Çevrimiçi]. Available:

https://mattmazur.com/2015/03/17/a-step-by-step-

backpropagation-example/.

[6] G. Cybenko , «Approximation by superpositions of a

sigmoidal function,» Mathematics of Control, Signals and

Systems, no. 2, p. 303–314, Aralık 1989.

[7] S. Hochreiter ve J. Schmidhuber, «Long short-term

memory,» %1 içinde Neural computation, 1997.

[8] A. Graves, «Long Short-Term Memory,» %1 içinde

Supervised Sequence Labelling with Recurrent Neural

Networks, Springer, 2012, pp. 37-45.

[9] Alptürk, E. K. ve Y. Kutlu, Analysis of Relation between

Motor Activity and Imaginary EEG Records, Journal of

Artificial Intellicence with Application, no. 1, pp. 5-10,

2020.

