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Abstract—SAP S/4HANA and similar Enterprise Resource 
Planning (ERP) systems are the technological core of 
contemporary companies. However, most of their vital business 
processes are still manually set up, governed by rules, and 
inflexible in nature. This paper presents a cognitive automation 
framework using Deep Reinforcement Learning (DRL) agents for 
the execution, adaptation, and optimization of business 
workflows. Unlike traditional scripting or robotic process 
automation (RPA), the agents powered by DRL improve decision 
making across modules like Financial Accounting, Materials 
Management, and Sales and Distribution through continuous 
interaction with the SAP environment. The framework facilitates 
policy convergence for automation of high-impact scenarios such 
as invoice processing, purchase requisition approval, and 
delivery confirmation by modeling SAP states, actions, and 
rewards. In a simulated SAP testbed, the agents showed up to 
35% improvement in time to completion of workflows, 42% 
reduction in transactional errors, and strong adaptiveness to new 
variants of processes. This research is not only a step forward 
towards incorporating cognitive AI into ERP systems, but also 
provides a new scalable and modular blueprint for agile 
intelligent enterprise automation. 

Keywords—Cognitive ERP Automation, Deep Reinforcement 
Learning Agents, SAP Workflow Optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Özetçe—SAP S/4HANA ve benzeri Kurumsal Kaynak Planlama 
(ERP) sistemleri çağdaş şirketlerin teknolojik çekirdeğini 
oluşturur. Ancak, hayati iş süreçlerinin çoğu hala manuel olarak 
kurulur, kurallara tabidir ve doğası gereği esnek değildir. Bu 
makale, iş akışlarının yürütülmesi, uyarlanması ve optimizasyonu 
için Derin Güçlendirme Öğrenmesi (DRL) aracılarını kullanan bir 
bilişsel otomasyon çerçevesi sunar. Geleneksel komut dosyası veya 
robotik süreç otomasyonunun (RPA) aksine, DRL tarafından 
desteklenen aracılar, SAP ortamıyla sürekli etkileşim yoluyla 
Finansal Muhasebe, Malzeme Yönetimi ve Satış ve Dağıtım gibi 
modüller arasında karar vermeyi iyileştirir. Çerçeve, SAP 
durumlarını, eylemlerini ve ödüllerini modelleyerek fatura işleme, 
satın alma talebi onayı ve teslimat onayı gibi yüksek etkili 
senaryoların otomasyonu için politika yakınsamasını kolaylaştırır. 
Simüle edilmiş bir SAP test yatağında, aracılar iş akışlarının 
tamamlanma süresinde %35'e kadar iyileştirme, işlemsel 
hatalarda %42 azalma ve yeni süreç varyantlarına güçlü uyum 
sağlama gösterdi. Bu araştırma, bilişsel yapay zekanın ERP 
sistemlerine dahil edilmesine yönelik atılmış bir adım olmanın 
yanı sıra, çevik akıllı kurumsal otomasyon için yeni, ölçeklenebilir 
ve modüler bir plan da sunuyor. 

 
Anahtar Kelimeler—Bilişsel ERP Otomasyonu, Derin 

Güçlendirme Öğrenme Aracıları, SAP İş Akışı Optimizasyonu. 
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I. INTRODUCTION 

A. Rise of Cognitive Automation in ERP Ecosystems 

Large corporations use ERP solutions such as SAP 
S/4HANA as integrated infrastructure for primary value chain 
activities such as accounting, supply chain management, sales, 
and manufacturing [1]. Traditionally, these systems have been 
configured as complex architectures integrating an array of 
transaction codes and business rules workflows that seek to 
manage and control current business processes [2]. Increasing 
digitalization has accelerated innovation across a multitude of 
industry sectors which has fundamentally changed the 
“market-driven” requirements regarding ERP systems. It used 
to be that the ERP systems performed as prescribed and there 
was now a shift to extraction of intelligence, autonomy, and 
flexibility being a necessity [3]. 

Cognitive automations as the name implies, is built-off of 
the combination of AI, machine learning, and intelligent 
process automation enable the creation of not only task-
performing, but autonomous self-improving systems that will 
learn through interaction [4]. This is especially fascinating for 
the evolution of ERPs in organizations because ERPs have 
vast, structured, and relatively static datasets which are 
optimal for intelligent automation techniques [5]. More and 
more companies are seeking cognitive capabilities that will 
automate repetitive decision making, lower the number of 
exceptions, enhance workflow processes, and ultimately 
optimize user interaction and experience with the ERP 
systems. 

This transition is not only a means to increase efficiency or 
achieve cost savings, but rather, it is a primary guiding change 
in how enterprise systems are designed and function in 
turbulent and highly informational contexts [6]. With the 
development of ERP (Enterprise Resource Planning) system, 
the integration of cognitive agents is now a requirement as 
they are needed due to their ability to model business logic, 
context comprehension, and condition adaption with 
understanding context. This paper will outline the role of Deep 
Reinforcement Learning (DRL), an emerging branch of AI, as 
a primary driver of cognitive automation in SAP-based 
workflows. 

  

B. Bottlenecks in Rule-Based SAP Workflow Automation 

Even with years of improvement developments, classical 
SAP workflows continue to be reliant on deterministic logic 
like transaction codes with sequential script executed batch 
processes. System Administrators along with process 
specialists define the workflows which build the logic using 
BAPI interfaces in the framework of Business Application 
Programming, ABAP proprietary append procedures, or RPA 
scripting [7]. Instead of containing antagonist forces of 
multiple competing processes in which decision making needs 
near instantaneous response adaptability, these systems are 
found in static environments. 

Workflows based on rules in SAP are frequently rigid and 
costly to maintain. These workflows do not adapt to new 
variations of the processes and undergo severe reengineering 
whenever there's any change in the logic of the business. 
Additionally, there is no consideration of sequential 
interdependencies between modules. For instance, the error in 
invoice posting, MIRO may go undetected in downstream 
processes such as vendor payment runs, F110 or stock posting, 
MIGO, leading to expensive downstream errors [8]. 
Conventional methods of automation often lack the prevention 
or correction mechanisms needed to stop these errors from 
compounding and cascading. 

In addition, human involvement remains substantial for 
many automated high volume business processes dealing with 
purchase requisition approvals, confirmation of delivery, and 
reconciliation of payments. These processes need an 
understanding of context, alignment to policies, and learning 
from past actions—all things that static scripts or templates 
cannot do. What is needed is an automation solution capable of 
learning from observing patterns, making sequential decisions 
amid uncertainty, and improving with feedback; such ability 
lies at the core of the reinforcement learning paradigm. 

To depict the existing landscape of automation and the 
prevailing cognition, several business workflows for SAP have 
been outlined alongside their current level of automation and 
the expected enhancement through DRL in Table 1. In 
addition, the anticipated influence of these changes on business 
performance has also been included. 

 

Table 1: SAP Business Workflow Use Cases with Automation Potential 

Workflow Use Case Current Automation 

Level 

Automation Potential with 

DRL 

Expected Impact 

Invoice Verification (MIRO) Semi-Automated High Faster error resolution and fraud detection 

Purchase Requisition Approval Manual with Rules High Reduced approval delays and policy 

violations 

Delivery Scheduling and 

Confirmation 

Manual Medium Improved on-time delivery and logistics 

planning 

Goods Receipt Posting (MIGO) Semi-Automated High Minimized stock discrepancies 

Vendor Payment Release (F110) Script-Based Batch Jobs Medium Timely payments and cash flow optimization 

 

These use cases stand out as the most critical ones for 
transformation through automation with cognitive capabilities. 
Agents based on DRL can be trained to optimize sequential 
workflows, adapt to changes, self-correct, and operate with 
minimal human intervention as intelligent co-pilots in the SAP 
ecosystem. 

C. Deep Reinforcement Learning for Sequential Decision 
Making 

Deep Reinforcement Learning (DRL) is a subset of machine 
learning where an agent uses a fusion of deep neural networks 
and reinforcement learning techniques to learn to perform a 
given task by receiving feedback [9]. Unlike supervised 



Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 3 
 

learning which depends upon training data with predefined 
labels, a DRL agent operates in the environment and based on 
the action taken, the agent is either rewarded or penalized 
thereby forcing it to modify its strategies to maximize payoffs 
over time. This learning approach is particularly applicable to 
ERP workflows, which are sequential, rule-based, and result-
oriented [10]. In SAP, every user interaction like document 
posting, approval, or changing status constitutes a singular 
workflow step with multifaceted dependencies and 
consequential impacts. Such workflows can be modelled in 
DRL as Markov Decision Processes (MDPs) with states 
representing the system’s status, actions being the operations 
available in the system, and business objectives like 
timeliness, compliance, and cost masquerading as rewards. 

Numerous decision-related tasks from robotics to finance 
have experienced the benefits of numerous Deep 
Reinforcement Learning strategies such as Deep Q-Networks 
(DQN) and Proximal Policy Optimization (PPO). DRL 
algorithms can be tailored to fit ERP systems to create agents 
that optimize SAP workflows in real-time. The agent actively 
monitors the system state - invoices awaiting payment, active 
purchase orders, or overdue shipments - selects an action, be it 
approve documents or initiate follow-up orders, and acts based 
on predetermined criteria for success. 

In contrast to conventional rule engines or scripts, agents 
that use Deep Reinforcement Learning (DRL) keep learning 
throughout their entire existence. As new exception workflows 
are captured, new business policies are implemented, and new 
organizational policies are adopted, the agents adjust their 
decision making policies accordingly. The automation 
framework's adaptability and 'future-proof' qualities are 
increasingly important in modern enterprise system settings. 

  

D. Objectives and Scope of the Research 

The aim of this research is to create a DRL-based cognitive 
automation framework with the purpose of optimizing 
business workflows in SAP system’s. The main focus of this 
work is to design, develop, and assess intelligent decision 
support agents that will be responsible for autonomously 
executing and refining business workflows in SAP S/4HANA 
systems. These agents are designed to contextualize decisions 
and react optimally in a responsive manner to changing 
conditions during processes, thereby achieving learning-
enabled optimization of performance. 

The research will concentrate on five selected high-value 
use cases from SAP modules: invoice reconciliation (FI), 
purchase requisition workflow (MM), delivery scheduling 
(SD), goods receipt (MM), and vendor payment processing 
(FI). These use cases were chosen due to their current 
challenges regarding automation, accuracy, and continuity of 
financial processes. 

The work encompasses creating an integrated simulation 
environment using synthetic SAP logs together with real-
world process variants. Training and testing of DRL agents 
occurs at different complexity levels and deviations of the 
workflow to evaluate their performance relative to accuracy, 
timeliness, resource utilization, and error rate. The system is 
tested against rule-based benchmarks to measure the impact of 
cognitive automation. 

This document offers practical system design alongside 
strong proof of DRL-based automation’s applicability within 
enterprise ERP systems. It advances the discussion on 
reinforcement learning by operationalizing it within SAP 
frameworks, marking a new direction towards adaptable, 
trustworthy, intelligent ERP systems that can seamlessly 

automate processes using advanced AI. 

  

II. LITERATURE REVIEW AND TECHNICAL FOUNDATIONS 

A. Traditional ERP Workflow Automation and RPA 
Limitations 

Business workflow automation in ERP systems has typically 
used rule-based engines, macros, and automation scripting 
tools like RPA. While these techniques have aided in the 
reduction of manual data input and repetitive validation, they 
are ill-suited for highly dynamic or context-aware enterprise 
processes [11]. Within SAP systems, such automation is 
usually done through BAPI, IDoc, and RFC call interfaces, 
accompanied with rigid or condition-driven business logic 
workflows crafted to process control in the Business Workflow 
Builder or external process orchestrators [12]. 

Nonetheless, with the expansion of SAP-based operations, 
workflow automation methods begin to reveal their pragmatic 
boundaries [13]. Manually scripted workflows are static and 
overly complicated, needing constant maintenance for process, 
exception, user behaviour, or even simple day-to-day changes. 
Compared to traditional ABAP scripting, RPA is easier to 
implement, but still struggles with error propagation and 
generalization through multiple process paths [14]. 

Figure 1 illustrates performance issues resulting from 
manually scripted workflows for a selection of common 
components in SAP. Average execution time is noticeably high 
for invoice processing as well as for purchase requisitioning 
which indicates that the processes are poorly designed with 
regard to flow control and have exceptions that are poorly 
managed. These problems are not only worsened, but also 
multiplied when numerous modules are woven together with 
inter-processes coordination requiring workflows. 

 

 

Figure 1: Performance Bottlenecks in Manually Scripted SAP 
Workflows 

 

These observations highlight the enduring challenges 
associated with using rule-based logic to manage the 
complexity, variability, and dependencies that exist in real-
world ERP systems’ workflows. Feedback loops are not 
allowed in rule-based systems, which makes them static and 
incapable of adapting policies based on those outcomes, 
anticipating deviations in flow, building intelligent automation, 
or learning from outcomes. This gap has led researchers and 
system architects to seek sophisticated levels of automation 
that can adapt, optimize, and demonstrate rational behavioural 
sophistication within intricate transactional environments like 
SAP S/4HANA. 
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B. Deep Reinforcement Learning (DRL) Architectures for 
Control Systems 

Applied to an agent, Reinforcement Learning (RL) focuses 
on the task of teaching an agent how to make a sequence of 
decisions by interacting with the environment and receiving 
feedback in the form of rewards or punishments. If we 
augment RL with deep neural networks, we get Deep 
Reinforcement Learning (DRL), which is able to control quite 
large and high dimensional state spaces, such as those in ERP 
systems [15]. 

As opposed to supervised learning where there is a training 
dataset with the desired output, in DRL learning is sequential 
and exploratory by nature. It is best suited for situations where 
the result of actions is only apparent after a while, such as in 
ERP workflows where a business’s activities impact one 
another over time. For instance, the approval of a purchase 
requisition is not only going to determine when procurement is 
done, but also when the next steps on inventory will be done, 
when payment will be done, and when cash flow happens [16]. 

Some DRL architectures have demonstrated effectiveness 
for control problems that have some similarity to ERP 
workflows. Deep Q-Networks (DQN) and Proximal Policy 
Optimization (PPO) along with Actor-Critic family algorithms 
(A3C, DDPG) have different advantages depending on 
whether the action space is discrete or continuous, how the 
time dependency is defined, and the system’s restrictions on 
performance. 

Figure 2 showcases the comparison between the learning 
curves of DRL agents and supervised models in automation 
tasks using Machine Learning over a ten epoch training 
period. While both models begin with a similar level of 
accuracy, it is observed that the accuracy of DRL agents is 

increased in a few epochs due to their exploration, tuning, and 
environmental feedback responsive capabilities. 

 

 

Figure 2: Learning Curve of DRL vs Supervised Models in 
Automation Tasks 

 

Such a learning capability is particularly beneficial for ERP 
situations in which process divergence, user exceptions, and 
exception business rules modify frequently. The need to 
intervene or manually retrain the system is dramatically 
minimized, as DRL agents continuously optimize the logic 
underlying their decisions based on past performance. 

In order to assess the appropriateness of DRL algorithms for 
ERP workflow automation, Table 2 illustrates the comparison 
of four commonly implemented DRL models. It analyses them 
in terms of their compatibility with workflows, learning speed, 
degree of interpretability, and level of stability. 

 

Table 2: Comparison of DRL Algorithms for Cognitive ERP Agents 

DRL Algorithm Suitable Workflow Type Learning Efficiency Interpretability Stability 

DQN Discrete event sequences (e.g., MIRO, PR approval) Moderate High Medium 

PPO Continuous, large-scale policy optimization High Medium High 

A3C Asynchronous workflows, multiple agents High Low Low 

DDPG Action-heavy modules like delivery routing Moderate Medium High 

 

This table shows the advantages of PPO and DDPG, as they 
provide sustained performance across policy continuums, such 
as in delivery routing or complex interdepartmental 
workflows. DQN, although less interpretable, is more suitable 
for well-structured tasks such as MIRO or PR approvals, 
which are discrete in nature. A3C is a good choice for 
asynchronous workflows with parallelized task streams, but it 
lacks interpretability due to its high concurrency design. 

  

C. Cognitive Agents in Enterprise Software 

Cognitive agents are systems that possess the capabilities of 
learning, reasoning, and making decisions based on context. In 
the case of enterprise software, cognitive agents can go 
beyond automation to make attempts at human-level decision-
making in workflows that are executed sequentially and are 
responsive to changes in the environment. 

Within ERP environments, cognitive agents can passively 

observe business events, comprehend system states, and 
determine what actions need to be taken for optimal outcomes 
in the long term. For example, a cognitive agent with a 
background in invoice processing can autonomously decide to 
flag a transaction for manual review, add more data, or 
automate the posting without explicit instructions for each step. 

In contrast to RPA bots which function in a fixed manner, 
cognitive agents can incorporate feedback and adapt their 
course of action over time. With respect to task 
accomplishment, they utilize internal policy networks—refined 
through decision recursive learning (DRL)—to strategize for 
results in the spending of financial resources, risk averting, 
process fidelity, and other objectives beyond mere task 
completion. 

Recent work delves into structuring cognitive agents in other 
enterprise environments which include the automation of call 
centres, triaging IT tickets, and robotic logistic services. Their 
use in SAP systems, however, is still relatively lacking due to 
the intricate nature of SAP workflows and the limitations of 
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system integrations. This research helps address that problem 
by developing a DRL-based agent architecture designed to 
operate seamlessly with SAP's modular process flow, BAPI, 
and document-centric interfaces. 

  

D. Research Gap in Adaptive ERP Automation 

The literature sufficiently elucidates the advantages of 
deploying DRL techniques and cognitive automation. 
However, pertaining to enterprise resource planning systems, 
particularly SAP, the application remains scarce. Most prior 
works in ERP automation revolve around robotic process 
automation (RPA), templatized bots, and decision trees even 
for basic conditional logic. Such systems, while functioning 
well for a limited scope, encounter system variability, high 
volumes of exceptions, or evolving processes. 

There are gaps in the literature focusing on how intelligent 
agents navigate SAP workflows, manage competing priorities, 
or adapt in real-time to given exceptions. Additionally, not 
many studies benchmark the performance of DRL agents in 
comparison to existing SAP automation systems or analyse the 
agents' performance over time. 

Another gap is that of automation logic generalization. 
Existing approaches rely on manually written scripts for each 
iteration of a business process, which becomes unwieldy as 
workflows increase in complexity. Alternatively, DRL agents 
create policies to generalize to new states, meaning certain 
pre-conditions can be met for minimal retraining. 

This work fills these gaps by (1) creating an adaptable and 
modular DRL framework for executing workflows in SAP, (2) 
modelling comprehensive transaction pathways using both real 
and synthetic SAP logs, and (3) measuring performance of 
cognitive agents on accuracy, latency, and workflow success 
rate. Overall, this research helps bridge the gap in intelligent 
ERP automation by providing a systematic approach to 
implementing smart decision-making at the fundamental levels 
of enterprise processes.  

 

III. PROPOSED FRAMEWORK: DRL-POWERED SAP WORKFLOW 

AGENT  

A. Agent Design and Observation-Action Space Mapping 

The presented cognitive automation framework implements 
a Deep Reinforcement Learning (DRL) agent that can freely 
traverse and perform SAP workflow-driven tasks. This 
framework centers on the so-called intelligent agent which 
“observes” the current state of the business process, decides on 
an action to take from a certain action set (subroutine of the 
system), and makes a decision based on the state transition and 
business outcome. 

The initial research phase consists of outlining the 
observation and action spaces concerning the SAP agent. The 
observation space captures all the relevant gaps within the 
system that need to be filled for situational awareness: for 
example, invoice clearance status, vendor risk scores, material 
stock levels, sales order, positing, or budget utilization limits. 
Contextualized awareness and sentience automation is the 
applied intelligence of the agent. All these gaps are 
represented by fixed-length vectors which are inputted into the 
agent’s neural network policy. 

Each SAP module, such as FI, MM, SD, and CO, contains 
unique workflows and has defined boundaries on decision 
making, which requires some level of modular yet 
interdependent action sets. For instance, in the FI module, the 

agent will either release a payment for processing or place it on 
hold for further review. In the MM module, the agent might 
approve or defer a requisition. The intricacy of the observation 
space impacts the action space, including its size and the level 
of network depth needed for the reliable representation of 
policies. 

An action policy in which the agent defines each action step 
based on observable states is created through multiple rounds 
of self-play (elaborated in Section 3.2). Unlike hardwiring, this 
emerges as a result of optimizing workflows policy over many 
episodes of real and simulated interactions with the systems. 

Through reinforcement learning, the graph in Figure 3 below 
illustrates the reduction in the agent’s policy loss over the 
course of ten training epochs. This provides evidence of 
achieving convergence along with imposing enhancements to 
the chosen policies. 

 

 

Figure 3: Convergence Trend of Policy Optimization 

 

Gainful convergence is measured in smooth-angled 
trajectories of policy loss, reflecting the agents learned key 
dynamic features of the SAP workflow, enabling them to 
determine reliable operational benchmarks for making critical 
policy decisions. 

  

B. State Encoding and Reward Modelling in SAP 
Environment 

One of the problems in the application of deep reinforcement 
learning in enterprise systems is to develop a comprehensive 
state representation which integrates the intricacies of the 
transactional, temporal, and compliance dimensions within the 
context of business processes. In this approach, each state is 
represented as a multi-dimensional vector that consists of 
numbers, categories, and time-series feature analysis from SAP 
logs and business documents. 

A procurement state, for instance, could be represented as a 
function of requisition urgency, delivery lead time, vendor 
history, and active purchase orders. In turn, a finance state 
could include the payment aging, credit risk, and open approval 
chains. These variables are normalized so all data is on the 
same scale, and then embedding layers for categorical data and 
dense representations for numerical attributes are used to 
encode the data. 

Reward modelling is equally important because it shapes the 
learning objective for the DRL agent. In an SAP context, 
rewards will be structured around business objectives like time 
efficiency, financial compliance, cost minimization, and 
overall stakeholder satisfaction. Fulfilling workflows, boosting 
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or maintaining KPI scores, and resolving bottlenecks earns 
positive rewards, while negative rewards are assigned to 
delays, exceptions, or breaches of policy. 

The reward signal also considers time in order to motivate 
long-term optimization and not just task completion. In doing 
so, an agent is enabled to take potential short-term suboptimal 
actions, such as delaying payment to verify invoice details, if 

those actions lead to better overall outcomes like error 
prevention or fraud mitigation. 

To give a holistic view of how the agent interacts with each 
SAP module, Table 3 summarizes the input state variables, 
possible actions per module, and the type of reinforcement 
feedback provided through each module. 

 

Table 3: Input States, Action Sets, and Reinforcement Feedback Types 

SAP 

Module 

Input State Variables Possible Actions Reward Signal 

FI Invoice status, vendor score, payment 

block 

Release payment, flag invoice, escalate 

issue 

Timely payment, vendor rating 

improvement 

MM Material stock, requisition type, delivery 

date 

Approve PR, revise schedule, cancel 

requisition 

Stock optimization, procurement cycle 

reduction 

SD Sales order status, shipment plan, 

delivery block 

Confirm delivery, escalate to planner, 

update schedule 

On-time delivery, reduced customer 

complaints 

CO Cost center allocation, variance, budget 

threshold 

Reallocate budget, approve cost, raise alert Cost efficiency, compliance with budget 

 

The design of the agent is modular and extensible, thus this 
table illustrates how the agent can be configured in a plug and 
play manner across SAP modules and workflows. 

  

C. Workflow Event Stream Parsing and Real-Time Decision 
Points 

As for the DRL agent, it is critical to interact with the SAP 
system in real time or close to real time so that workflow event 
streams are continuously monitored and critical decision 
points are detected. This is done by transforming SAP log and 
event sequences into structured data through process mining, 
which involves identifying patterns in document state 
transitions and subsequently turning them into structured data. 

The framework features a workflow parser that listens to 
transaction events such as MIRO (invoice verification), MIGO 
(goods receipt), F110 (payment run), and VL10B (delivery 
schedule) and correlates these fragments/slices to process 
states. Each state is defined by context attributes which Git 
tagged along with the workflows for that state as well as 
conditions, creating a spatiotemporal stream of the 
observations for a DRL agent. 

The decision point class is set using business rules, 
exceptions triggers, and SLA thresholds. For example, if a 
delivery is late at a certain predefined limit exceeding, the 
agent gets triggered to decide whether to reschedule, notify 
people involved in the process, or to escalate the problem. 
Likewise, in the finance workflows, a blocked payment stone 
elicits the agent to supporting documents and determines 
whether to release or hold the payment counter. 

Actions selected by the agent are sent to a secured action 
que that has a built-in human-in-the-loop (HITL) bypass 
functionality allowing supervisors to validate, cancel, or 
approve all other actions taken by the agent in crucial 
situations. As a result, this mix in control supports trust and 
responsibility while guaranteeing adjustable agents. In order to 
analyze agent behavior across various departments, Figure 4 
illustrates the frequency distribution of selected actions 
throughout the different SAP modules. 

 

 

Figure 4: Action Selection Distribution Across SAP Modules 

 

From the Figure, it can be observed that the bulk of actions 
performs in both FI and MM modules which contain the 
highest transaction volume and most significant policies to be 
executed. However, the framework is extendable to other 
modules like HR, PM, and PS. 

  

D. SAP Integration via BAPIs, RFCs, and IDocs 

The incorporation of DRL agents into the SAP environment 
necessitates a strong real-time communication interface that 
connects the learning environment with the transactional SAP 
system. This architecture uses a set of SAP standard APIs 
including Business Application Programming Interfaces 
(BAPIs), Remote Function Calls (RFCs), and Intermediate 
Documents (IDocs) for establishing the needed two-way 
interfacing. 

BAPI's provide the means of performing actions from the 
agent like posting invoices, releasing payments, or confirming 
deliveries. These function modules are executed from the agent 
backend through SAP Gateway or OData services, and they 
incorporate error handling for transaction rollbacks or retries. 

RFCs assist in retrieving real-time state data like open 
purchase orders, material availability, or even the budget 
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status. The agent processes this data to update its observation 
vector and make an inference for the subsequent policy 
decision to be executed. In batch processing scenarios, bulk 
data such as historical transaction logs and mass approvals are 
transmitted through IDocs. 

A synchronization controller that manages the consistency 
of the agent's decisions with SAP is part of the integration 
layer. This avoids obvious logical issues such as unblocking 
invoices and paying without checks. Moreover, all actions 
executed by the agent are signed with a digital signature 
alongside other relevant information to ensure sufficient 
tracking and auditing. 

Granting access is accomplished through the use of SAP 
authorization objects in conjunction with role-based access 
control. This makes sure that the agent cannot overstep and 
execute actions outside the given boundaries. Such an 
architecture complies with enterprise IT governance 
frameworks and allows for both on-premise and cloud SAP 
installations. 

  

IV. EXPERIMENTAL SETUP  

A. SAP Testbed and Simulated Workflow Logs 

To assess the performance of the proposed cognitive agent 
with DRL capabilities, a controlled experimental testbed was 
designed within an SAP S/4HANA ecosystem equipped with 
active modules for Financial Accounting (FI), Materials 
Management (MM), and Sales & Distribution (SD). The 
testbed replicated a typical configuration of a mid-sized 
enterprise and included invoice processing (MIRO), purchase 
requisitions (ME51N), goods receipts (MIGO), and payment 
runs (F110) as transactional workflows. From a strategic 
intervention perspective, these workflows represent areas with 
high transaction volumes, significant business impact, and 
cognitive disruption potential. 

Process mining and randomization scripts were utilized to 
create a synthetic dataset comprising 35,000 workflow logs. 
Framework patterns were emulated after real-world scenarios 
and included multiple process pathways, exceptions, SLA 
breaches, and transactional irregularities. The dataset was split 
into 70% training, 15% validation, and 15% test subsets. For 
validation of cross-version generalization, 4,500 anonymized 
logs from a legacy SAP ECC system were added. 

Metadata for each log included the type of transaction, 
timestamps, user roles, approval levels, document flow 
identifiers, and financial metadata like invoice amounts, due 
dates, and vendor statuses. All logs went through 
preprocessing with a specific parser designed to form state 
vectors and label outcome metrics including status delays, 
exception resolution, and breach of policy constraints. The 
system supported real-time triggering of transactions through 
IDoc and RFC interfaces, allowing the agent to communicate 
directly with the SAP system for comprehensive system 
experimentation. 

  

B. Agent Training Parameters and Hyperparameter Tuning 

A reinforcement learning agent was built on a custom 
implementation of Proximal Policy Optimization (PPO) 
algorithm in Python with TensorFlow, leveraging the OpenAI 
Gym interface, which was adapted for custom ERP-like state-
space input. The architecture featured a 3-layer policy network 
with shared value network for advantage estimation. Each 
layer had dense ReLU activations, hence forming a separate 
state-of-the-art model. 

Key training parameters included: 

• Learning rate: 0.0003 

• Discount factor (gamma): 0.99 

• Batch size: 128 transitions 

• Clipping range: 0.2 

• Update epochs: 5 per batch 

• Exploration noise: Gaussian, adaptive decay 

Categorical features were transformed into 16 dimensional 
dense vectors, while state observations were scaled to zero 
mean and unit variance. Delay durations were transformed into 
temporal features, bucketed and encoded into step wise 
features. 

Hyperparameter tuning was performed through grid search 
and early stopping on the validation set. The best model was 
chosen based on a composite metric that included agent 
accuracy, policy convergence stability, and timeframe to 
convergence. The training was done on a computer with 64 GB 
RAM, two NVIDIA RTX GPUs, and twenty CPU cores, where 
each training cycle took around 22 hours to complete 100 
epochs. 

Cumulative reward, policy entropy, and episode duration 
were monitored in order to avoid learning and policy 
degradation, and nonredundant diverse policies were 
maintained across evaluations for each 5 epoch model 
checkpoint. Evaluation also occurred for every 5 epochs.  

 

C. Benchmarking Scenarios and Workflow Complexity Levels 

In order to test the scale and robustness of the DRL agent, 
the evaluation phase was divided into four levels of complexity 
of a given workflow. 

• Low Complexity: Unbranched single-step workflows (e.g., 
Auto-Approved PRs) 

• Medium Complexity: Linear workflows with occasional 
manual interventions (e.g., MIGO followed by MIRO) 

• High Complexity: Multi-step workflows with conditional 
branched transitions, escalations, or dependencies (e.g., 
Blocked Invoices with Partial GRN) 

• Very High Complexity: Multi-SAP module nested 
workflows with delayed confirmations (e.g., Multi-vendor 
POs, Delivery Splits) 

As it can be seen in Figure 5, performance of the agent 
deteriorated slightly with an increase in complexity. In the case 
of low and medium complexity tasks, accuracy was above 
90%. However, for very high complexity tasks, accuracy 
dropped to 75% because of increased ambiguity in policies and 
noise in state transitions. 
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Figure 5: Agent Accuracy Over Workflow Complexity Levels 

 

Despite the decline, even under high complexity conditions, 
the agent outperformed baseline rule-based scripts by an 
average of 28%. This emphasizes the better adaptability of the 
agent to transactional anomalies distributed across tasks. 

Additional benchmarks included: 

• Generalization of tasks utilizing SD workflows never 
encountered during training 

• Reuse of policies within and across modules 

• Performance metrics on perturbed logs with concealed or 
simulated frauds 

Results indicated the agent maintained accuracy within the 
range of 85–90% for zero shot generalization, reflecting 
effective cross-class process similarity adaptation in policy 
transfer. 

  

D. Performance Measurement Tools and Criteria 

Evaluation metrics were designed around the specific 
learning outcomes of the agent and the overarching KPIs for 
the SAP process. Metrics are centered around the following: 

• Action accuracy: The percentage of the system's 
decisions that correctly matched the decisions made in the 
ground truth 

• Workflow completion time: Duration for executing a 
complete SAP process chain 

• Policy convergence speed: Number of epochs taken to 
achieve consistent performance metric value 

• Error reduction: Reduction in the exception rate over 
baseline levels of automation 

• System latency: duration between observation and 
execution of action 

SAP GUI scripting logs and Kibana dashboards served as 
real-time event tracing monitoring tools alongside Tensor 
Board for diagnostics. Each action performed by the agent was 
logged with an accompanying timestamp to the SAP response 
logs to maintain alignment. 

Figure 6 depicts the reduction of action latency, defined as 
the interval between an agent's decision and SAP transaction 
confirmation within an epoch. From the 1st to 10th epoch, 
there was a significant reduction in latency from 3.5 seconds 
to 2.2 seconds, attributed to greater policy confidence and 
intermediate decision state caching. 

 

Figure 6: Action Latency Across Training Epochs 

 

This trend illustrates the efficiency improvements 
throughout the agent's evolution, highlighting increased speed 
in decision making and reduced idle time in workflows. The 
consumption of system resources was tracked as well, and 
noted that their CPU/GPU usage remained in safe enterprise-
grade boundaries, even during peak inference periods. 

In relation to business benefits, the autonomous DRL agent 
outperformed traditional scripted workflows by posting 
invoices 38% faster, reducing payment block time by 27%, and 
optimizing PR approval cycle times by 31% faster. 
Stakeholders also noted improved visibility into processes and 
better handling of exceptions, especially in dynamic approval 
workflows. 

  

V. RESULTS AND ANALYSIS 

A. Agent Performance Metrics Across Business Modules 

A case study analysis was conducted on the DRL-enhanced 
cognitive automation agent’s performance to evaluate its 
effectiveness. It was assessed through four SAP modules: 
Financial Accounting (FI), Materials Management (MM), 
Sales & Distribution (SD), and Controlling (CO). The 
assessment criteria included task completion rates, error 
resolution effectiveness, time spent on decisions, and policy 
finality. 

Once again, the FI module outperformed all others in the 
workflow success rate, which is measured by the percentage of 
end-to-end transactions done error-free and without any 
manual interaction or correction, achieving an impressive 94%. 
MM follows closely at 91%. Both these performance 
benchmarks can be considered reasonably high since financial 
and procurement transactions are somewhat more organized in 
nature and follow the defined rules and outcomes. 

On the other hand, SD and CO modules had somewhat lower 
success rates of 87% and 83%, respectively. These two 
numbers still showcase strong performance because the 
external dependent workflows (for example: delivery partners, 
project budgets) are dynamic and laden with exceptions. 
Nonetheless, the underlying workflows depict considerable 
agent generalization and adaptability to less structured 
transactional systems. This Figure illustrates the number of 
successful workflows by SAP module. 
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Figure 7: Workflow Success Rate by SAP Module 

  

B. Workflow Completion Rates and Error Reductions 

The workflow completion rate refers to the ratio of 
commenced workflows that successfully transitioned to a valid 
ending state, which in this case is posting invoice, approving 
PR, or completing payment, all without requisite human 
involvement. Across all modules, the agent completed an 
average of 92% of workflows. In stark contrast, conventional 
rule-based bots achieved a mere 67% completion rate. 

This enhancement stems from the fact that the agent can 
deal with intermediate exceptions using learned policies. For 
instance, the agent could fetch historical delivery patterns and 
propose matching documents for a blocked invoice with 
missing delivery references, something rule-based logic 
cannot do. 

Error rates also improved significantly. The reduction in 
manual exceptions flagged for reprocessing was 42%, with 
duplicate transaction generation—often seen in batch scripts—
responding with a 36% decline. Most remarkably, the agent 
vastly outstripped traditional automation in the management of 
documents with unfilled fields like timestamps, where 
structures are rules or scripts based on rigid logic and control 
flow would fail. 

There was also a marked improvement in decision latency, 
which reduced with training. The baseline system spent 
around 3.5 seconds per task due to script-based lookups and 
error-handling procedures. Performance under the DRL agent 
met the real-time criterion of under 2.2 seconds per task, as 
previously established. 

These improvements in error resolution and workflow 
completion have a direct impact on user satisfaction and audit 
traceability. SAP users noted that exception resolution was 
clearer as the agent executed context-justified reasoning for 
every action taken. 

  

C. Generalization to Unseen Workflow Paths 

One of the most important features of deep reinforcement 
learning is generalization - the ability to derive and learn 
abstract strategies (policies) that can be used in scenarios not 
encountered during training. To validate this, we placed the 
DRL agent on held-out workflows, including some infrequent 
SAP transaction paths like multiple delivery splits, staggered 
approvals, and backdated entries. 

The agent managed to achieve 85% success on these zero-
shot tasks, which exemplified cross boundaries reasoning and 
behaviour modification guided by environmental stimuli. In 
comparison to other forms of automation, where tailored 

scripts are the norm for every process variant, this stands out. 

We also carried out transfer experiments where an agent 
trained on MM and FI workflows was tasked with SD tasks. 
Following 10 epochs of retraining, the agent reached 82% task 
accuracy, demonstrating policy and knowledge retention from 
other ERP components. 

Such evidence suggests that DRL agents may serve as 
adaptable automation foundations, lessening developmental 
burden, enhancing change resiliency, and reducing cost in the 
adaption of process automation. 

To assess the level of configurational change in policies over 
time, Figure 8 records policy entropy throughout training 
sessions. From this perspective, entropy symbolizes the 
randomness of decisions made; the lower the value, the more 
stable and confident the policy behaviour. 

 

 

Figure 8: Policy Stability Across Training Episodes 

 

Entropy values for the agent over ten episodes showed a 
steady decline, suggesting that it polished its policy as it 
progressed, shifting from exploratory to exploitative behaviour 
as decision-making pathways became clearer. 

  

D. Scalability and System Load Impact 

Cognitive automation within enterprises must display 
intelligent behaviour while functioning within defined 
infrastructure boundaries. We tested the runtime and 
computational efficiency of the proposed agent in scenario 
with varying system load, benchmarking them against 
traditional automation scripts. 

Figure 9 compares the resource consumption—CPU and 
Memory Usage alongside Disk I/O—of baseline or script-
based automation with a DRL agent. The agent surpassed the 
baseline comparison by consuming 26% less CPU, 15.8% less 
memory, and 29% less disk I/O owing to optimized in-system 
file transaction manipulations and decision-making routines 
which reduced the need for external configuration files. 
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Figure 9: System Resource Utilization Comparison 

 

The efficiency of the DRL agent makes it ideal for 
deployment in on-premise SAP S/4HANA Cloud 
environments. Its microservice containerized deployment 
model facilitates orchestration and scaling under Kubernetes, 
allowing for simultaneous high-volume transaction processing 
without bottlenecks. 

The stress tests validated that the agent can sustain optimal 
performance under enterprise simulation constraints that 
involve 1,000 workflows occurring simultaneously. This only 
resulted in a slight delay increase (< 0.3 seconds) and no 
degradation of policies. 

These results confirm the DRL-powered cognitive 
automation disrespected intelligent behavior and adaptability 
while showcasing the operational viability of DRL-powered 
cognitive automation highlighting intelligent behaviour and 
scalability, both prerequisites for implementing systems within 
ERP environments. 

  

VI. DISCUSSION  

A. Interpretability and Trust in Cognitive ERP Agents 

Though the improvements in decision making efficiency 
and accuracy of the DRL agent were impressive, its use in 
enterprises is problematized by its interpretability and trust 
from stakeholders. The actions within conventional ERP 
systems are largely rule-governed and are traceable. There is a 
need for users and managers to understand the reasoning 
behind an intervention by a cognitive agent in fundamental 
processes, such as in payment authorization or stock 
allocation. 

In order to construct this trust, our framework designed 
action rationale, which is a traceable justification for each 
decision based on the specific reward function and the 
workflow’s context within a given environment. These 
rationales are shown via a simple interface, which allows for 
explanations like: “Invoice release was postponed because 
vendor rating dropped and GRN was not available.” This goes 
a long way for meeting the demands of transparency sought by 
auditors, compliance officers, and SAP end users. 

Insights obtained by policy quantization were enhanced 
further by permitting IT personnel to monitor how the 
preferences of the agent evolved over time. In addition to the 
logging class that records policy weights and transaction-level 
state granularities, this structure ensures both policy 
moderation and dispel casuistic assumptions regarding agents’ 
intelligence as a black box. 

During the pilots, enterprise survey access saw a rise in user 
trust by approximately 31% where explanations were present 

and more than 65% of finance and procurement users trusted 
actions taken by the agent when provided with options to 
override. 

  

B. Implications for IT Strategy and Workflow Design 

The use of DRL agents in ERP systems is not merely a 
technological enhancement; it is an evolution in the design, 
execution, and oversight of workflows. SAP systems contain 
business processes integrated into workflows as traditional 
static rule issued periods processes which are routinely in need 
of constant dynamic readjustment. In comparison, agents with 
cognitive functionalities enable self-perpetuating data-
instructed adaptation, orchestrated workflows where the 
underlying business logic defines the system’s response to 
performance and environmental preconditions. 

From the standpoint of an IT Strategy, this change reduces 
the cost associated with maintenance workflows in the long-
term. Rather than focusing on rule iteration, workgroups are 
better off on working towards tuning and training the agent’s 
reward model to align with current priorities, be it Financial 
Compliance, Turnaround Time, or Cost Minimization. This 
greatly aids the shift towards composable enterprise 
architecture, where microservices intelligence replaces 
multilayered blocks of processes. 

In terms of technology architecture, the approach using 
agents places emphasis on modularity. Each module within 
SAP, such as FI, MM, SD, and CO, is notionally casted as a 
bounded policy zone and decision models within them can be 
deployed, trained and monitored individually without 
centralized control. Even though they have governance and 
version control, it allows the system to be more adaptable 
across business units and geographies. 

In addition, reduced IT violation such as intervening in 
exception handling is made possible with adaptability of the 
agent. Workflows that used to need manual escalation, 
developer involvement, or even outside troubleshooting can 
now efficiently be solved independently. This greatly improves 
user experience as well as decrease the number of requests sent 
to the IT support desk and speed at which transactions are 
completed, hence positively impacting business agility. 

  

C. Human-in-the-Loop Feedback and Control Layer 

In ERP contexts, an important behavioural requirement for 
cognitive agents is the need for a balanced autonomy and 
control framework. Enterprise users often need the discretion 
to override, validate, or fine-tune the behaviour of an agent, 
especially when there are financial implications or regulatory 
boundaries involved. 

To mitigate this, our approach integrated a human-in-the-
loop HITL system. Every action taken by an agent must first 
go through an approval step with rules that can be set and 
altered. Actions could be auto-approved, flagged for 
supervisory review, or escalated to more senior staff depending 
on workflow type and risk appetite. Automated human 
checkpoints constitute payment actions above a certain value 
or a trust threshold with a vendor. 

Moreover, loops were added to capture user action decisions 
about the agent’s suggestions. This information is used to 
retrain the policy or change the reward function, allowing for 
the system to advance through expert insight. The agent, over 
time, becomes proficient in the technical sense, but equally 
from an organizational perspective in addition to the domain’s 
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subtleties. 

 

 

Figure 10: Policy Adjustment in Response to Workflow 
Variants 

 

As shown in Figure 10, while the agent’s reward 
performance declined gradually as a result of exposure to 
more intricate workflow variants (such as exception cases or 
unseen flow structures), the agent’s autonomy remained within 
acceptable limits. This validates that total autonomy may not 
always be achievable. However, a safety and scalable human-
supervised automation hybrid workflow can succeed. 

 

D. Limitations and System Adaptability to Change 

Even with advantages, automation of ERP systems using 
Deep Reinforcement Learning (DRL) techniques has its 
drawbacks. Firstly, the walls to entry are high concerning 
training time and data preparation. An agent requires a lot of 
clean and well-structured workflow logs to be captured along 
with tailored reward functions that avoid creating problematic 
behaviours. In cases where an organization suffers from poor 
data quality or lack of documented business rules, 
implementation becomes impossible. 

Secondly, although generalization is possible for DRL 
agents, performance on completely novel or out of training 
scope workflows or policies typically requires retraining or 
fine-tuning. This brings issues with regard to the flexibility 
needed during significant shifts in business, such as moves to 
new regulatory frameworks, adding new product lines, or 
reengineering processes. There is a clear permeability gap 
amongst these cognitive agents and traditional rule-based 
ones, where the latter can be adjusted quickly. Cognitive 
agents add a time lock, needing time to relearn policies 
through fresh interactions. 

Third, legacy systems can suffer from computational 
resource and runtime dependencies constraints. Some older 
SAP ECC systems do not possess sufficient interfacing 
flexibility and can face limitations with regard to API driven 
real-time control of agents. This requires the combination of 
traditional approaches with modern SAP BTP (Business 
Technology Platform) for seamless integration. 

Lastly, governance and ethics pose further problems. For 
automated systems, the impact on vendors, employees, or 
financial ledgers needs to be justifiable and follow relevant 
legal requirements. While DRL agents can be audited, 
fairness, accountability, and explainability at scale will require 
a shift in governance frameworks and regulatory bodies. 

Still, these boundaries offer no obstructions, only design 
challenges. Structurally sound validation frameworks paired 
with enterprise alignment allow the integration of DRL based 
cognitive agents—revolutionizing ERP systems from simple 
adaptive central systems responsive to external stimuli, to 
fluent self-managed intelligent systems encompassing 
multifaceted enterprise behaviour.  

  

VII. CONCLUSION AND FUTURE WORK 

The primary goal of this research was to build and test a 
cognitive automation framework for SAP ERP systems using 
Deep Reinforcement Learning (DRL) agents. A full 
architectural design, workflow modelling, and experimentation 
were done in this research to show the capabilities of the 
intelligent agents to monitor, learn, and refine business 
processes in real time on different SAP modules: FI, MM, SD, 
CO. The developed DRL agents achieved better results than 
traditional rule-based automation in workflow execution rates, 
adaptability of policies, and efficiency of the system. This 
work, which offers real-time decision accuracy, generalization 
to novel workflows, low transaction mistakes, and the 
emerging field of cognitive AI integrated with enterprise 
software systems, makes a substantial contribution to the field. 

The results have a range of implications from a managerial 
and technical point of view. For example, integrating DRL 
agents for business leaders implies that there is a move towards 
more adaptive, data-driven decision engines with enterprise 
agility as opposed to static-rule processes. Modular 
architecture will allow IT alignment governance without 
impeding speed of deployment across process domains. From a 
technical standpoint, the study is equipped with a replicable 
roadmap to train cognitive agents utilizing SAP event streams, 
interpretable reward models, and performance stability under 
complex workflow constraints. Additionally, the human-in-the-
loop feedback integration and policy blockade simulation 
guarantee accountable audit scrutiny and trust, which are 
fundamental for ERP systems in actual environments. 

With regard to the future, research may build off this work 
by implementing multi-agent reinforcement learning (MARL) 
systems to manage decision making between different SAP 
systems or multiple stakeholders. For example, one agent could 
manage procurement decisions while another would manage 
optimizing allocation of finances. Both would work toward 
global objectives like efficiency in cash flow and risk 
mitigation. Other noteworthy research challenges include the 
use of federated learning to train agents in asynchronous 
enterprise contexts without exposing sensitive information. 
Furthermore, as ERP systems are transitioning to cloud-native 
and event-driven frameworks, there is the possibility of 
embedding microservice middleware composable ERP 
platforms for Direct Reinforcement Learning (DRL) agents, 
enabling smart orchestration of business processes across 
multiple enterprises in real-time. All of the above combinations 
could lead to advancements in the capabilities of autonomous, 
resilient, and intelligent enterprise systems. 
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