
Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 1

Cognitive Automation of SAP Business Workflows

Using Deep Reinforcement Learning Agents

Derin Güçlendirme Öğrenme Aracılarını Kullanarak

SAP İş Akışlarının Bilişsel Otomasyonu
Naren Swamy Jamithireddy

Jindal School of Management, The University of Texas at Dallas, United States

 Email: naren.jamithireddy@yahoo.com

Abstract—SAP S/4HANA and similar Enterprise Resource
Planning (ERP) systems are the technological core of
contemporary companies. However, most of their vital business
processes are still manually set up, governed by rules, and
inflexible in nature. This paper presents a cognitive automation
framework using Deep Reinforcement Learning (DRL) agents for
the execution, adaptation, and optimization of business
workflows. Unlike traditional scripting or robotic process
automation (RPA), the agents powered by DRL improve decision
making across modules like Financial Accounting, Materials
Management, and Sales and Distribution through continuous
interaction with the SAP environment. The framework facilitates
policy convergence for automation of high-impact scenarios such
as invoice processing, purchase requisition approval, and
delivery confirmation by modeling SAP states, actions, and
rewards. In a simulated SAP testbed, the agents showed up to
35% improvement in time to completion of workflows, 42%
reduction in transactional errors, and strong adaptiveness to new
variants of processes. This research is not only a step forward
towards incorporating cognitive AI into ERP systems, but also
provides a new scalable and modular blueprint for agile
intelligent enterprise automation.

Keywords—Cognitive ERP Automation, Deep Reinforcement
Learning Agents, SAP Workflow Optimization.

Özetçe—SAP S/4HANA ve benzeri Kurumsal Kaynak Planlama
(ERP) sistemleri çağdaş şirketlerin teknolojik çekirdeğini
oluşturur. Ancak, hayati iş süreçlerinin çoğu hala manuel olarak
kurulur, kurallara tabidir ve doğası gereği esnek değildir. Bu
makale, iş akışlarının yürütülmesi, uyarlanması ve optimizasyonu
için Derin Güçlendirme Öğrenmesi (DRL) aracılarını kullanan bir
bilişsel otomasyon çerçevesi sunar. Geleneksel komut dosyası veya
robotik süreç otomasyonunun (RPA) aksine, DRL tarafından
desteklenen aracılar, SAP ortamıyla sürekli etkileşim yoluyla
Finansal Muhasebe, Malzeme Yönetimi ve Satış ve Dağıtım gibi
modüller arasında karar vermeyi iyileştirir. Çerçeve, SAP
durumlarını, eylemlerini ve ödüllerini modelleyerek fatura işleme,
satın alma talebi onayı ve teslimat onayı gibi yüksek etkili
senaryoların otomasyonu için politika yakınsamasını kolaylaştırır.
Simüle edilmiş bir SAP test yatağında, aracılar iş akışlarının
tamamlanma süresinde %35'e kadar iyileştirme, işlemsel
hatalarda %42 azalma ve yeni süreç varyantlarına güçlü uyum
sağlama gösterdi. Bu araştırma, bilişsel yapay zekanın ERP
sistemlerine dahil edilmesine yönelik atılmış bir adım olmanın
yanı sıra, çevik akıllı kurumsal otomasyon için yeni, ölçeklenebilir
ve modüler bir plan da sunuyor.

Anahtar Kelimeler—Bilişsel ERP Otomasyonu, Derin

Güçlendirme Öğrenme Aracıları, SAP İş Akışı Optimizasyonu.

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 2

I. INTRODUCTION

A. Rise of Cognitive Automation in ERP Ecosystems

Large corporations use ERP solutions such as SAP
S/4HANA as integrated infrastructure for primary value chain
activities such as accounting, supply chain management, sales,
and manufacturing [1]. Traditionally, these systems have been
configured as complex architectures integrating an array of
transaction codes and business rules workflows that seek to
manage and control current business processes [2]. Increasing
digitalization has accelerated innovation across a multitude of
industry sectors which has fundamentally changed the
“market-driven” requirements regarding ERP systems. It used
to be that the ERP systems performed as prescribed and there
was now a shift to extraction of intelligence, autonomy, and
flexibility being a necessity [3].

Cognitive automations as the name implies, is built-off of
the combination of AI, machine learning, and intelligent
process automation enable the creation of not only task-
performing, but autonomous self-improving systems that will
learn through interaction [4]. This is especially fascinating for
the evolution of ERPs in organizations because ERPs have
vast, structured, and relatively static datasets which are
optimal for intelligent automation techniques [5]. More and
more companies are seeking cognitive capabilities that will
automate repetitive decision making, lower the number of
exceptions, enhance workflow processes, and ultimately
optimize user interaction and experience with the ERP
systems.

This transition is not only a means to increase efficiency or
achieve cost savings, but rather, it is a primary guiding change
in how enterprise systems are designed and function in
turbulent and highly informational contexts [6]. With the
development of ERP (Enterprise Resource Planning) system,
the integration of cognitive agents is now a requirement as
they are needed due to their ability to model business logic,
context comprehension, and condition adaption with
understanding context. This paper will outline the role of Deep
Reinforcement Learning (DRL), an emerging branch of AI, as
a primary driver of cognitive automation in SAP-based
workflows.

B. Bottlenecks in Rule-Based SAP Workflow Automation

Even with years of improvement developments, classical
SAP workflows continue to be reliant on deterministic logic
like transaction codes with sequential script executed batch
processes. System Administrators along with process
specialists define the workflows which build the logic using
BAPI interfaces in the framework of Business Application
Programming, ABAP proprietary append procedures, or RPA
scripting [7]. Instead of containing antagonist forces of
multiple competing processes in which decision making needs
near instantaneous response adaptability, these systems are
found in static environments.

Workflows based on rules in SAP are frequently rigid and
costly to maintain. These workflows do not adapt to new
variations of the processes and undergo severe reengineering
whenever there's any change in the logic of the business.
Additionally, there is no consideration of sequential
interdependencies between modules. For instance, the error in
invoice posting, MIRO may go undetected in downstream
processes such as vendor payment runs, F110 or stock posting,
MIGO, leading to expensive downstream errors [8].
Conventional methods of automation often lack the prevention
or correction mechanisms needed to stop these errors from
compounding and cascading.

In addition, human involvement remains substantial for
many automated high volume business processes dealing with
purchase requisition approvals, confirmation of delivery, and
reconciliation of payments. These processes need an
understanding of context, alignment to policies, and learning
from past actions—all things that static scripts or templates
cannot do. What is needed is an automation solution capable of
learning from observing patterns, making sequential decisions
amid uncertainty, and improving with feedback; such ability
lies at the core of the reinforcement learning paradigm.

To depict the existing landscape of automation and the
prevailing cognition, several business workflows for SAP have
been outlined alongside their current level of automation and
the expected enhancement through DRL in Table 1. In
addition, the anticipated influence of these changes on business
performance has also been included.

Table 1: SAP Business Workflow Use Cases with Automation Potential

Workflow Use Case Current Automation

Level

Automation Potential with

DRL

Expected Impact

Invoice Verification (MIRO) Semi-Automated High Faster error resolution and fraud detection

Purchase Requisition Approval Manual with Rules High Reduced approval delays and policy

violations

Delivery Scheduling and

Confirmation

Manual Medium Improved on-time delivery and logistics

planning

Goods Receipt Posting (MIGO) Semi-Automated High Minimized stock discrepancies

Vendor Payment Release (F110) Script-Based Batch Jobs Medium Timely payments and cash flow optimization

These use cases stand out as the most critical ones for
transformation through automation with cognitive capabilities.
Agents based on DRL can be trained to optimize sequential
workflows, adapt to changes, self-correct, and operate with
minimal human intervention as intelligent co-pilots in the SAP
ecosystem.

C. Deep Reinforcement Learning for Sequential Decision
Making

Deep Reinforcement Learning (DRL) is a subset of machine
learning where an agent uses a fusion of deep neural networks
and reinforcement learning techniques to learn to perform a
given task by receiving feedback [9]. Unlike supervised

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 3

learning which depends upon training data with predefined
labels, a DRL agent operates in the environment and based on
the action taken, the agent is either rewarded or penalized
thereby forcing it to modify its strategies to maximize payoffs
over time. This learning approach is particularly applicable to
ERP workflows, which are sequential, rule-based, and result-
oriented [10]. In SAP, every user interaction like document
posting, approval, or changing status constitutes a singular
workflow step with multifaceted dependencies and
consequential impacts. Such workflows can be modelled in
DRL as Markov Decision Processes (MDPs) with states
representing the system’s status, actions being the operations
available in the system, and business objectives like
timeliness, compliance, and cost masquerading as rewards.

Numerous decision-related tasks from robotics to finance
have experienced the benefits of numerous Deep
Reinforcement Learning strategies such as Deep Q-Networks
(DQN) and Proximal Policy Optimization (PPO). DRL
algorithms can be tailored to fit ERP systems to create agents
that optimize SAP workflows in real-time. The agent actively
monitors the system state - invoices awaiting payment, active
purchase orders, or overdue shipments - selects an action, be it
approve documents or initiate follow-up orders, and acts based
on predetermined criteria for success.

In contrast to conventional rule engines or scripts, agents
that use Deep Reinforcement Learning (DRL) keep learning
throughout their entire existence. As new exception workflows
are captured, new business policies are implemented, and new
organizational policies are adopted, the agents adjust their
decision making policies accordingly. The automation
framework's adaptability and 'future-proof' qualities are
increasingly important in modern enterprise system settings.

D. Objectives and Scope of the Research

The aim of this research is to create a DRL-based cognitive
automation framework with the purpose of optimizing
business workflows in SAP system’s. The main focus of this
work is to design, develop, and assess intelligent decision
support agents that will be responsible for autonomously
executing and refining business workflows in SAP S/4HANA
systems. These agents are designed to contextualize decisions
and react optimally in a responsive manner to changing
conditions during processes, thereby achieving learning-
enabled optimization of performance.

The research will concentrate on five selected high-value
use cases from SAP modules: invoice reconciliation (FI),
purchase requisition workflow (MM), delivery scheduling
(SD), goods receipt (MM), and vendor payment processing
(FI). These use cases were chosen due to their current
challenges regarding automation, accuracy, and continuity of
financial processes.

The work encompasses creating an integrated simulation
environment using synthetic SAP logs together with real-
world process variants. Training and testing of DRL agents
occurs at different complexity levels and deviations of the
workflow to evaluate their performance relative to accuracy,
timeliness, resource utilization, and error rate. The system is
tested against rule-based benchmarks to measure the impact of
cognitive automation.

This document offers practical system design alongside
strong proof of DRL-based automation’s applicability within
enterprise ERP systems. It advances the discussion on
reinforcement learning by operationalizing it within SAP
frameworks, marking a new direction towards adaptable,
trustworthy, intelligent ERP systems that can seamlessly

automate processes using advanced AI.

II. LITERATURE REVIEW AND TECHNICAL FOUNDATIONS

A. Traditional ERP Workflow Automation and RPA
Limitations

Business workflow automation in ERP systems has typically
used rule-based engines, macros, and automation scripting
tools like RPA. While these techniques have aided in the
reduction of manual data input and repetitive validation, they
are ill-suited for highly dynamic or context-aware enterprise
processes [11]. Within SAP systems, such automation is
usually done through BAPI, IDoc, and RFC call interfaces,
accompanied with rigid or condition-driven business logic
workflows crafted to process control in the Business Workflow
Builder or external process orchestrators [12].

Nonetheless, with the expansion of SAP-based operations,
workflow automation methods begin to reveal their pragmatic
boundaries [13]. Manually scripted workflows are static and
overly complicated, needing constant maintenance for process,
exception, user behaviour, or even simple day-to-day changes.
Compared to traditional ABAP scripting, RPA is easier to
implement, but still struggles with error propagation and
generalization through multiple process paths [14].

Figure 1 illustrates performance issues resulting from
manually scripted workflows for a selection of common
components in SAP. Average execution time is noticeably high
for invoice processing as well as for purchase requisitioning
which indicates that the processes are poorly designed with
regard to flow control and have exceptions that are poorly
managed. These problems are not only worsened, but also
multiplied when numerous modules are woven together with
inter-processes coordination requiring workflows.

Figure 1: Performance Bottlenecks in Manually Scripted SAP
Workflows

These observations highlight the enduring challenges
associated with using rule-based logic to manage the
complexity, variability, and dependencies that exist in real-
world ERP systems’ workflows. Feedback loops are not
allowed in rule-based systems, which makes them static and
incapable of adapting policies based on those outcomes,
anticipating deviations in flow, building intelligent automation,
or learning from outcomes. This gap has led researchers and
system architects to seek sophisticated levels of automation
that can adapt, optimize, and demonstrate rational behavioural
sophistication within intricate transactional environments like
SAP S/4HANA.

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 4

B. Deep Reinforcement Learning (DRL) Architectures for
Control Systems

Applied to an agent, Reinforcement Learning (RL) focuses
on the task of teaching an agent how to make a sequence of
decisions by interacting with the environment and receiving
feedback in the form of rewards or punishments. If we
augment RL with deep neural networks, we get Deep
Reinforcement Learning (DRL), which is able to control quite
large and high dimensional state spaces, such as those in ERP
systems [15].

As opposed to supervised learning where there is a training
dataset with the desired output, in DRL learning is sequential
and exploratory by nature. It is best suited for situations where
the result of actions is only apparent after a while, such as in
ERP workflows where a business’s activities impact one
another over time. For instance, the approval of a purchase
requisition is not only going to determine when procurement is
done, but also when the next steps on inventory will be done,
when payment will be done, and when cash flow happens [16].

Some DRL architectures have demonstrated effectiveness
for control problems that have some similarity to ERP
workflows. Deep Q-Networks (DQN) and Proximal Policy
Optimization (PPO) along with Actor-Critic family algorithms
(A3C, DDPG) have different advantages depending on
whether the action space is discrete or continuous, how the
time dependency is defined, and the system’s restrictions on
performance.

Figure 2 showcases the comparison between the learning
curves of DRL agents and supervised models in automation
tasks using Machine Learning over a ten epoch training
period. While both models begin with a similar level of
accuracy, it is observed that the accuracy of DRL agents is

increased in a few epochs due to their exploration, tuning, and
environmental feedback responsive capabilities.

Figure 2: Learning Curve of DRL vs Supervised Models in
Automation Tasks

Such a learning capability is particularly beneficial for ERP
situations in which process divergence, user exceptions, and
exception business rules modify frequently. The need to
intervene or manually retrain the system is dramatically
minimized, as DRL agents continuously optimize the logic
underlying their decisions based on past performance.

In order to assess the appropriateness of DRL algorithms for
ERP workflow automation, Table 2 illustrates the comparison
of four commonly implemented DRL models. It analyses them
in terms of their compatibility with workflows, learning speed,
degree of interpretability, and level of stability.

Table 2: Comparison of DRL Algorithms for Cognitive ERP Agents

DRL Algorithm Suitable Workflow Type Learning Efficiency Interpretability Stability

DQN Discrete event sequences (e.g., MIRO, PR approval) Moderate High Medium

PPO Continuous, large-scale policy optimization High Medium High

A3C Asynchronous workflows, multiple agents High Low Low

DDPG Action-heavy modules like delivery routing Moderate Medium High

This table shows the advantages of PPO and DDPG, as they
provide sustained performance across policy continuums, such
as in delivery routing or complex interdepartmental
workflows. DQN, although less interpretable, is more suitable
for well-structured tasks such as MIRO or PR approvals,
which are discrete in nature. A3C is a good choice for
asynchronous workflows with parallelized task streams, but it
lacks interpretability due to its high concurrency design.

C. Cognitive Agents in Enterprise Software

Cognitive agents are systems that possess the capabilities of
learning, reasoning, and making decisions based on context. In
the case of enterprise software, cognitive agents can go
beyond automation to make attempts at human-level decision-
making in workflows that are executed sequentially and are
responsive to changes in the environment.

Within ERP environments, cognitive agents can passively

observe business events, comprehend system states, and
determine what actions need to be taken for optimal outcomes
in the long term. For example, a cognitive agent with a
background in invoice processing can autonomously decide to
flag a transaction for manual review, add more data, or
automate the posting without explicit instructions for each step.

In contrast to RPA bots which function in a fixed manner,
cognitive agents can incorporate feedback and adapt their
course of action over time. With respect to task
accomplishment, they utilize internal policy networks—refined
through decision recursive learning (DRL)—to strategize for
results in the spending of financial resources, risk averting,
process fidelity, and other objectives beyond mere task
completion.

Recent work delves into structuring cognitive agents in other
enterprise environments which include the automation of call
centres, triaging IT tickets, and robotic logistic services. Their
use in SAP systems, however, is still relatively lacking due to
the intricate nature of SAP workflows and the limitations of

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 5

system integrations. This research helps address that problem
by developing a DRL-based agent architecture designed to
operate seamlessly with SAP's modular process flow, BAPI,
and document-centric interfaces.

D. Research Gap in Adaptive ERP Automation

The literature sufficiently elucidates the advantages of
deploying DRL techniques and cognitive automation.
However, pertaining to enterprise resource planning systems,
particularly SAP, the application remains scarce. Most prior
works in ERP automation revolve around robotic process
automation (RPA), templatized bots, and decision trees even
for basic conditional logic. Such systems, while functioning
well for a limited scope, encounter system variability, high
volumes of exceptions, or evolving processes.

There are gaps in the literature focusing on how intelligent
agents navigate SAP workflows, manage competing priorities,
or adapt in real-time to given exceptions. Additionally, not
many studies benchmark the performance of DRL agents in
comparison to existing SAP automation systems or analyse the
agents' performance over time.

Another gap is that of automation logic generalization.
Existing approaches rely on manually written scripts for each
iteration of a business process, which becomes unwieldy as
workflows increase in complexity. Alternatively, DRL agents
create policies to generalize to new states, meaning certain
pre-conditions can be met for minimal retraining.

This work fills these gaps by (1) creating an adaptable and
modular DRL framework for executing workflows in SAP, (2)
modelling comprehensive transaction pathways using both real
and synthetic SAP logs, and (3) measuring performance of
cognitive agents on accuracy, latency, and workflow success
rate. Overall, this research helps bridge the gap in intelligent
ERP automation by providing a systematic approach to
implementing smart decision-making at the fundamental levels
of enterprise processes.

III. PROPOSED FRAMEWORK: DRL-POWERED SAP WORKFLOW

AGENT

A. Agent Design and Observation-Action Space Mapping

The presented cognitive automation framework implements
a Deep Reinforcement Learning (DRL) agent that can freely
traverse and perform SAP workflow-driven tasks. This
framework centers on the so-called intelligent agent which
“observes” the current state of the business process, decides on
an action to take from a certain action set (subroutine of the
system), and makes a decision based on the state transition and
business outcome.

The initial research phase consists of outlining the
observation and action spaces concerning the SAP agent. The
observation space captures all the relevant gaps within the
system that need to be filled for situational awareness: for
example, invoice clearance status, vendor risk scores, material
stock levels, sales order, positing, or budget utilization limits.
Contextualized awareness and sentience automation is the
applied intelligence of the agent. All these gaps are
represented by fixed-length vectors which are inputted into the
agent’s neural network policy.

Each SAP module, such as FI, MM, SD, and CO, contains
unique workflows and has defined boundaries on decision
making, which requires some level of modular yet
interdependent action sets. For instance, in the FI module, the

agent will either release a payment for processing or place it on
hold for further review. In the MM module, the agent might
approve or defer a requisition. The intricacy of the observation
space impacts the action space, including its size and the level
of network depth needed for the reliable representation of
policies.

An action policy in which the agent defines each action step
based on observable states is created through multiple rounds
of self-play (elaborated in Section 3.2). Unlike hardwiring, this
emerges as a result of optimizing workflows policy over many
episodes of real and simulated interactions with the systems.

Through reinforcement learning, the graph in Figure 3 below
illustrates the reduction in the agent’s policy loss over the
course of ten training epochs. This provides evidence of
achieving convergence along with imposing enhancements to
the chosen policies.

Figure 3: Convergence Trend of Policy Optimization

Gainful convergence is measured in smooth-angled
trajectories of policy loss, reflecting the agents learned key
dynamic features of the SAP workflow, enabling them to
determine reliable operational benchmarks for making critical
policy decisions.

B. State Encoding and Reward Modelling in SAP
Environment

One of the problems in the application of deep reinforcement
learning in enterprise systems is to develop a comprehensive
state representation which integrates the intricacies of the
transactional, temporal, and compliance dimensions within the
context of business processes. In this approach, each state is
represented as a multi-dimensional vector that consists of
numbers, categories, and time-series feature analysis from SAP
logs and business documents.

A procurement state, for instance, could be represented as a
function of requisition urgency, delivery lead time, vendor
history, and active purchase orders. In turn, a finance state
could include the payment aging, credit risk, and open approval
chains. These variables are normalized so all data is on the
same scale, and then embedding layers for categorical data and
dense representations for numerical attributes are used to
encode the data.

Reward modelling is equally important because it shapes the
learning objective for the DRL agent. In an SAP context,
rewards will be structured around business objectives like time
efficiency, financial compliance, cost minimization, and
overall stakeholder satisfaction. Fulfilling workflows, boosting

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 6

or maintaining KPI scores, and resolving bottlenecks earns
positive rewards, while negative rewards are assigned to
delays, exceptions, or breaches of policy.

The reward signal also considers time in order to motivate
long-term optimization and not just task completion. In doing
so, an agent is enabled to take potential short-term suboptimal
actions, such as delaying payment to verify invoice details, if

those actions lead to better overall outcomes like error
prevention or fraud mitigation.

To give a holistic view of how the agent interacts with each
SAP module, Table 3 summarizes the input state variables,
possible actions per module, and the type of reinforcement
feedback provided through each module.

Table 3: Input States, Action Sets, and Reinforcement Feedback Types

SAP

Module

Input State Variables Possible Actions Reward Signal

FI Invoice status, vendor score, payment

block

Release payment, flag invoice, escalate

issue

Timely payment, vendor rating

improvement

MM Material stock, requisition type, delivery

date

Approve PR, revise schedule, cancel

requisition

Stock optimization, procurement cycle

reduction

SD Sales order status, shipment plan,

delivery block

Confirm delivery, escalate to planner,

update schedule

On-time delivery, reduced customer

complaints

CO Cost center allocation, variance, budget

threshold

Reallocate budget, approve cost, raise alert Cost efficiency, compliance with budget

The design of the agent is modular and extensible, thus this
table illustrates how the agent can be configured in a plug and
play manner across SAP modules and workflows.

C. Workflow Event Stream Parsing and Real-Time Decision
Points

As for the DRL agent, it is critical to interact with the SAP
system in real time or close to real time so that workflow event
streams are continuously monitored and critical decision
points are detected. This is done by transforming SAP log and
event sequences into structured data through process mining,
which involves identifying patterns in document state
transitions and subsequently turning them into structured data.

The framework features a workflow parser that listens to
transaction events such as MIRO (invoice verification), MIGO
(goods receipt), F110 (payment run), and VL10B (delivery
schedule) and correlates these fragments/slices to process
states. Each state is defined by context attributes which Git
tagged along with the workflows for that state as well as
conditions, creating a spatiotemporal stream of the
observations for a DRL agent.

The decision point class is set using business rules,
exceptions triggers, and SLA thresholds. For example, if a
delivery is late at a certain predefined limit exceeding, the
agent gets triggered to decide whether to reschedule, notify
people involved in the process, or to escalate the problem.
Likewise, in the finance workflows, a blocked payment stone
elicits the agent to supporting documents and determines
whether to release or hold the payment counter.

Actions selected by the agent are sent to a secured action
que that has a built-in human-in-the-loop (HITL) bypass
functionality allowing supervisors to validate, cancel, or
approve all other actions taken by the agent in crucial
situations. As a result, this mix in control supports trust and
responsibility while guaranteeing adjustable agents. In order to
analyze agent behavior across various departments, Figure 4
illustrates the frequency distribution of selected actions
throughout the different SAP modules.

Figure 4: Action Selection Distribution Across SAP Modules

From the Figure, it can be observed that the bulk of actions
performs in both FI and MM modules which contain the
highest transaction volume and most significant policies to be
executed. However, the framework is extendable to other
modules like HR, PM, and PS.

D. SAP Integration via BAPIs, RFCs, and IDocs

The incorporation of DRL agents into the SAP environment
necessitates a strong real-time communication interface that
connects the learning environment with the transactional SAP
system. This architecture uses a set of SAP standard APIs
including Business Application Programming Interfaces
(BAPIs), Remote Function Calls (RFCs), and Intermediate
Documents (IDocs) for establishing the needed two-way
interfacing.

BAPI's provide the means of performing actions from the
agent like posting invoices, releasing payments, or confirming
deliveries. These function modules are executed from the agent
backend through SAP Gateway or OData services, and they
incorporate error handling for transaction rollbacks or retries.

RFCs assist in retrieving real-time state data like open
purchase orders, material availability, or even the budget

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 7

status. The agent processes this data to update its observation
vector and make an inference for the subsequent policy
decision to be executed. In batch processing scenarios, bulk
data such as historical transaction logs and mass approvals are
transmitted through IDocs.

A synchronization controller that manages the consistency
of the agent's decisions with SAP is part of the integration
layer. This avoids obvious logical issues such as unblocking
invoices and paying without checks. Moreover, all actions
executed by the agent are signed with a digital signature
alongside other relevant information to ensure sufficient
tracking and auditing.

Granting access is accomplished through the use of SAP
authorization objects in conjunction with role-based access
control. This makes sure that the agent cannot overstep and
execute actions outside the given boundaries. Such an
architecture complies with enterprise IT governance
frameworks and allows for both on-premise and cloud SAP
installations.

IV. EXPERIMENTAL SETUP

A. SAP Testbed and Simulated Workflow Logs

To assess the performance of the proposed cognitive agent
with DRL capabilities, a controlled experimental testbed was
designed within an SAP S/4HANA ecosystem equipped with
active modules for Financial Accounting (FI), Materials
Management (MM), and Sales & Distribution (SD). The
testbed replicated a typical configuration of a mid-sized
enterprise and included invoice processing (MIRO), purchase
requisitions (ME51N), goods receipts (MIGO), and payment
runs (F110) as transactional workflows. From a strategic
intervention perspective, these workflows represent areas with
high transaction volumes, significant business impact, and
cognitive disruption potential.

Process mining and randomization scripts were utilized to
create a synthetic dataset comprising 35,000 workflow logs.
Framework patterns were emulated after real-world scenarios
and included multiple process pathways, exceptions, SLA
breaches, and transactional irregularities. The dataset was split
into 70% training, 15% validation, and 15% test subsets. For
validation of cross-version generalization, 4,500 anonymized
logs from a legacy SAP ECC system were added.

Metadata for each log included the type of transaction,
timestamps, user roles, approval levels, document flow
identifiers, and financial metadata like invoice amounts, due
dates, and vendor statuses. All logs went through
preprocessing with a specific parser designed to form state
vectors and label outcome metrics including status delays,
exception resolution, and breach of policy constraints. The
system supported real-time triggering of transactions through
IDoc and RFC interfaces, allowing the agent to communicate
directly with the SAP system for comprehensive system
experimentation.

B. Agent Training Parameters and Hyperparameter Tuning

A reinforcement learning agent was built on a custom
implementation of Proximal Policy Optimization (PPO)
algorithm in Python with TensorFlow, leveraging the OpenAI
Gym interface, which was adapted for custom ERP-like state-
space input. The architecture featured a 3-layer policy network
with shared value network for advantage estimation. Each
layer had dense ReLU activations, hence forming a separate
state-of-the-art model.

Key training parameters included:

• Learning rate: 0.0003

• Discount factor (gamma): 0.99

• Batch size: 128 transitions

• Clipping range: 0.2

• Update epochs: 5 per batch

• Exploration noise: Gaussian, adaptive decay

Categorical features were transformed into 16 dimensional
dense vectors, while state observations were scaled to zero
mean and unit variance. Delay durations were transformed into
temporal features, bucketed and encoded into step wise
features.

Hyperparameter tuning was performed through grid search
and early stopping on the validation set. The best model was
chosen based on a composite metric that included agent
accuracy, policy convergence stability, and timeframe to
convergence. The training was done on a computer with 64 GB
RAM, two NVIDIA RTX GPUs, and twenty CPU cores, where
each training cycle took around 22 hours to complete 100
epochs.

Cumulative reward, policy entropy, and episode duration
were monitored in order to avoid learning and policy
degradation, and nonredundant diverse policies were
maintained across evaluations for each 5 epoch model
checkpoint. Evaluation also occurred for every 5 epochs.

C. Benchmarking Scenarios and Workflow Complexity Levels

In order to test the scale and robustness of the DRL agent,
the evaluation phase was divided into four levels of complexity
of a given workflow.

• Low Complexity: Unbranched single-step workflows (e.g.,
Auto-Approved PRs)

• Medium Complexity: Linear workflows with occasional
manual interventions (e.g., MIGO followed by MIRO)

• High Complexity: Multi-step workflows with conditional
branched transitions, escalations, or dependencies (e.g.,
Blocked Invoices with Partial GRN)

• Very High Complexity: Multi-SAP module nested
workflows with delayed confirmations (e.g., Multi-vendor
POs, Delivery Splits)

As it can be seen in Figure 5, performance of the agent
deteriorated slightly with an increase in complexity. In the case
of low and medium complexity tasks, accuracy was above
90%. However, for very high complexity tasks, accuracy
dropped to 75% because of increased ambiguity in policies and
noise in state transitions.

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 8

Figure 5: Agent Accuracy Over Workflow Complexity Levels

Despite the decline, even under high complexity conditions,
the agent outperformed baseline rule-based scripts by an
average of 28%. This emphasizes the better adaptability of the
agent to transactional anomalies distributed across tasks.

Additional benchmarks included:

• Generalization of tasks utilizing SD workflows never
encountered during training

• Reuse of policies within and across modules

• Performance metrics on perturbed logs with concealed or
simulated frauds

Results indicated the agent maintained accuracy within the
range of 85–90% for zero shot generalization, reflecting
effective cross-class process similarity adaptation in policy
transfer.

D. Performance Measurement Tools and Criteria

Evaluation metrics were designed around the specific
learning outcomes of the agent and the overarching KPIs for
the SAP process. Metrics are centered around the following:

• Action accuracy: The percentage of the system's
decisions that correctly matched the decisions made in the
ground truth

• Workflow completion time: Duration for executing a
complete SAP process chain

• Policy convergence speed: Number of epochs taken to
achieve consistent performance metric value

• Error reduction: Reduction in the exception rate over
baseline levels of automation

• System latency: duration between observation and
execution of action

SAP GUI scripting logs and Kibana dashboards served as
real-time event tracing monitoring tools alongside Tensor
Board for diagnostics. Each action performed by the agent was
logged with an accompanying timestamp to the SAP response
logs to maintain alignment.

Figure 6 depicts the reduction of action latency, defined as
the interval between an agent's decision and SAP transaction
confirmation within an epoch. From the 1st to 10th epoch,
there was a significant reduction in latency from 3.5 seconds
to 2.2 seconds, attributed to greater policy confidence and
intermediate decision state caching.

Figure 6: Action Latency Across Training Epochs

This trend illustrates the efficiency improvements
throughout the agent's evolution, highlighting increased speed
in decision making and reduced idle time in workflows. The
consumption of system resources was tracked as well, and
noted that their CPU/GPU usage remained in safe enterprise-
grade boundaries, even during peak inference periods.

In relation to business benefits, the autonomous DRL agent
outperformed traditional scripted workflows by posting
invoices 38% faster, reducing payment block time by 27%, and
optimizing PR approval cycle times by 31% faster.
Stakeholders also noted improved visibility into processes and
better handling of exceptions, especially in dynamic approval
workflows.

V. RESULTS AND ANALYSIS

A. Agent Performance Metrics Across Business Modules

A case study analysis was conducted on the DRL-enhanced
cognitive automation agent’s performance to evaluate its
effectiveness. It was assessed through four SAP modules:
Financial Accounting (FI), Materials Management (MM),
Sales & Distribution (SD), and Controlling (CO). The
assessment criteria included task completion rates, error
resolution effectiveness, time spent on decisions, and policy
finality.

Once again, the FI module outperformed all others in the
workflow success rate, which is measured by the percentage of
end-to-end transactions done error-free and without any
manual interaction or correction, achieving an impressive 94%.
MM follows closely at 91%. Both these performance
benchmarks can be considered reasonably high since financial
and procurement transactions are somewhat more organized in
nature and follow the defined rules and outcomes.

On the other hand, SD and CO modules had somewhat lower
success rates of 87% and 83%, respectively. These two
numbers still showcase strong performance because the
external dependent workflows (for example: delivery partners,
project budgets) are dynamic and laden with exceptions.
Nonetheless, the underlying workflows depict considerable
agent generalization and adaptability to less structured
transactional systems. This Figure illustrates the number of
successful workflows by SAP module.

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 9

Figure 7: Workflow Success Rate by SAP Module

B. Workflow Completion Rates and Error Reductions

The workflow completion rate refers to the ratio of
commenced workflows that successfully transitioned to a valid
ending state, which in this case is posting invoice, approving
PR, or completing payment, all without requisite human
involvement. Across all modules, the agent completed an
average of 92% of workflows. In stark contrast, conventional
rule-based bots achieved a mere 67% completion rate.

This enhancement stems from the fact that the agent can
deal with intermediate exceptions using learned policies. For
instance, the agent could fetch historical delivery patterns and
propose matching documents for a blocked invoice with
missing delivery references, something rule-based logic
cannot do.

Error rates also improved significantly. The reduction in
manual exceptions flagged for reprocessing was 42%, with
duplicate transaction generation—often seen in batch scripts—
responding with a 36% decline. Most remarkably, the agent
vastly outstripped traditional automation in the management of
documents with unfilled fields like timestamps, where
structures are rules or scripts based on rigid logic and control
flow would fail.

There was also a marked improvement in decision latency,
which reduced with training. The baseline system spent
around 3.5 seconds per task due to script-based lookups and
error-handling procedures. Performance under the DRL agent
met the real-time criterion of under 2.2 seconds per task, as
previously established.

These improvements in error resolution and workflow
completion have a direct impact on user satisfaction and audit
traceability. SAP users noted that exception resolution was
clearer as the agent executed context-justified reasoning for
every action taken.

C. Generalization to Unseen Workflow Paths

One of the most important features of deep reinforcement
learning is generalization - the ability to derive and learn
abstract strategies (policies) that can be used in scenarios not
encountered during training. To validate this, we placed the
DRL agent on held-out workflows, including some infrequent
SAP transaction paths like multiple delivery splits, staggered
approvals, and backdated entries.

The agent managed to achieve 85% success on these zero-
shot tasks, which exemplified cross boundaries reasoning and
behaviour modification guided by environmental stimuli. In
comparison to other forms of automation, where tailored

scripts are the norm for every process variant, this stands out.

We also carried out transfer experiments where an agent
trained on MM and FI workflows was tasked with SD tasks.
Following 10 epochs of retraining, the agent reached 82% task
accuracy, demonstrating policy and knowledge retention from
other ERP components.

Such evidence suggests that DRL agents may serve as
adaptable automation foundations, lessening developmental
burden, enhancing change resiliency, and reducing cost in the
adaption of process automation.

To assess the level of configurational change in policies over
time, Figure 8 records policy entropy throughout training
sessions. From this perspective, entropy symbolizes the
randomness of decisions made; the lower the value, the more
stable and confident the policy behaviour.

Figure 8: Policy Stability Across Training Episodes

Entropy values for the agent over ten episodes showed a
steady decline, suggesting that it polished its policy as it
progressed, shifting from exploratory to exploitative behaviour
as decision-making pathways became clearer.

D. Scalability and System Load Impact

Cognitive automation within enterprises must display
intelligent behaviour while functioning within defined
infrastructure boundaries. We tested the runtime and
computational efficiency of the proposed agent in scenario
with varying system load, benchmarking them against
traditional automation scripts.

Figure 9 compares the resource consumption—CPU and
Memory Usage alongside Disk I/O—of baseline or script-
based automation with a DRL agent. The agent surpassed the
baseline comparison by consuming 26% less CPU, 15.8% less
memory, and 29% less disk I/O owing to optimized in-system
file transaction manipulations and decision-making routines
which reduced the need for external configuration files.

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 10

Figure 9: System Resource Utilization Comparison

The efficiency of the DRL agent makes it ideal for
deployment in on-premise SAP S/4HANA Cloud
environments. Its microservice containerized deployment
model facilitates orchestration and scaling under Kubernetes,
allowing for simultaneous high-volume transaction processing
without bottlenecks.

The stress tests validated that the agent can sustain optimal
performance under enterprise simulation constraints that
involve 1,000 workflows occurring simultaneously. This only
resulted in a slight delay increase (< 0.3 seconds) and no
degradation of policies.

These results confirm the DRL-powered cognitive
automation disrespected intelligent behavior and adaptability
while showcasing the operational viability of DRL-powered
cognitive automation highlighting intelligent behaviour and
scalability, both prerequisites for implementing systems within
ERP environments.

VI. DISCUSSION

A. Interpretability and Trust in Cognitive ERP Agents

Though the improvements in decision making efficiency
and accuracy of the DRL agent were impressive, its use in
enterprises is problematized by its interpretability and trust
from stakeholders. The actions within conventional ERP
systems are largely rule-governed and are traceable. There is a
need for users and managers to understand the reasoning
behind an intervention by a cognitive agent in fundamental
processes, such as in payment authorization or stock
allocation.

In order to construct this trust, our framework designed
action rationale, which is a traceable justification for each
decision based on the specific reward function and the
workflow’s context within a given environment. These
rationales are shown via a simple interface, which allows for
explanations like: “Invoice release was postponed because
vendor rating dropped and GRN was not available.” This goes
a long way for meeting the demands of transparency sought by
auditors, compliance officers, and SAP end users.

Insights obtained by policy quantization were enhanced
further by permitting IT personnel to monitor how the
preferences of the agent evolved over time. In addition to the
logging class that records policy weights and transaction-level
state granularities, this structure ensures both policy
moderation and dispel casuistic assumptions regarding agents’
intelligence as a black box.

During the pilots, enterprise survey access saw a rise in user
trust by approximately 31% where explanations were present

and more than 65% of finance and procurement users trusted
actions taken by the agent when provided with options to
override.

B. Implications for IT Strategy and Workflow Design

The use of DRL agents in ERP systems is not merely a
technological enhancement; it is an evolution in the design,
execution, and oversight of workflows. SAP systems contain
business processes integrated into workflows as traditional
static rule issued periods processes which are routinely in need
of constant dynamic readjustment. In comparison, agents with
cognitive functionalities enable self-perpetuating data-
instructed adaptation, orchestrated workflows where the
underlying business logic defines the system’s response to
performance and environmental preconditions.

From the standpoint of an IT Strategy, this change reduces
the cost associated with maintenance workflows in the long-
term. Rather than focusing on rule iteration, workgroups are
better off on working towards tuning and training the agent’s
reward model to align with current priorities, be it Financial
Compliance, Turnaround Time, or Cost Minimization. This
greatly aids the shift towards composable enterprise
architecture, where microservices intelligence replaces
multilayered blocks of processes.

In terms of technology architecture, the approach using
agents places emphasis on modularity. Each module within
SAP, such as FI, MM, SD, and CO, is notionally casted as a
bounded policy zone and decision models within them can be
deployed, trained and monitored individually without
centralized control. Even though they have governance and
version control, it allows the system to be more adaptable
across business units and geographies.

In addition, reduced IT violation such as intervening in
exception handling is made possible with adaptability of the
agent. Workflows that used to need manual escalation,
developer involvement, or even outside troubleshooting can
now efficiently be solved independently. This greatly improves
user experience as well as decrease the number of requests sent
to the IT support desk and speed at which transactions are
completed, hence positively impacting business agility.

C. Human-in-the-Loop Feedback and Control Layer

In ERP contexts, an important behavioural requirement for
cognitive agents is the need for a balanced autonomy and
control framework. Enterprise users often need the discretion
to override, validate, or fine-tune the behaviour of an agent,
especially when there are financial implications or regulatory
boundaries involved.

To mitigate this, our approach integrated a human-in-the-
loop HITL system. Every action taken by an agent must first
go through an approval step with rules that can be set and
altered. Actions could be auto-approved, flagged for
supervisory review, or escalated to more senior staff depending
on workflow type and risk appetite. Automated human
checkpoints constitute payment actions above a certain value
or a trust threshold with a vendor.

Moreover, loops were added to capture user action decisions
about the agent’s suggestions. This information is used to
retrain the policy or change the reward function, allowing for
the system to advance through expert insight. The agent, over
time, becomes proficient in the technical sense, but equally
from an organizational perspective in addition to the domain’s

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 11

subtleties.

Figure 10: Policy Adjustment in Response to Workflow
Variants

As shown in Figure 10, while the agent’s reward
performance declined gradually as a result of exposure to
more intricate workflow variants (such as exception cases or
unseen flow structures), the agent’s autonomy remained within
acceptable limits. This validates that total autonomy may not
always be achievable. However, a safety and scalable human-
supervised automation hybrid workflow can succeed.

D. Limitations and System Adaptability to Change

Even with advantages, automation of ERP systems using
Deep Reinforcement Learning (DRL) techniques has its
drawbacks. Firstly, the walls to entry are high concerning
training time and data preparation. An agent requires a lot of
clean and well-structured workflow logs to be captured along
with tailored reward functions that avoid creating problematic
behaviours. In cases where an organization suffers from poor
data quality or lack of documented business rules,
implementation becomes impossible.

Secondly, although generalization is possible for DRL
agents, performance on completely novel or out of training
scope workflows or policies typically requires retraining or
fine-tuning. This brings issues with regard to the flexibility
needed during significant shifts in business, such as moves to
new regulatory frameworks, adding new product lines, or
reengineering processes. There is a clear permeability gap
amongst these cognitive agents and traditional rule-based
ones, where the latter can be adjusted quickly. Cognitive
agents add a time lock, needing time to relearn policies
through fresh interactions.

Third, legacy systems can suffer from computational
resource and runtime dependencies constraints. Some older
SAP ECC systems do not possess sufficient interfacing
flexibility and can face limitations with regard to API driven
real-time control of agents. This requires the combination of
traditional approaches with modern SAP BTP (Business
Technology Platform) for seamless integration.

Lastly, governance and ethics pose further problems. For
automated systems, the impact on vendors, employees, or
financial ledgers needs to be justifiable and follow relevant
legal requirements. While DRL agents can be audited,
fairness, accountability, and explainability at scale will require
a shift in governance frameworks and regulatory bodies.

Still, these boundaries offer no obstructions, only design
challenges. Structurally sound validation frameworks paired
with enterprise alignment allow the integration of DRL based
cognitive agents—revolutionizing ERP systems from simple
adaptive central systems responsive to external stimuli, to
fluent self-managed intelligent systems encompassing
multifaceted enterprise behaviour.

VII. CONCLUSION AND FUTURE WORK

The primary goal of this research was to build and test a
cognitive automation framework for SAP ERP systems using
Deep Reinforcement Learning (DRL) agents. A full
architectural design, workflow modelling, and experimentation
were done in this research to show the capabilities of the
intelligent agents to monitor, learn, and refine business
processes in real time on different SAP modules: FI, MM, SD,
CO. The developed DRL agents achieved better results than
traditional rule-based automation in workflow execution rates,
adaptability of policies, and efficiency of the system. This
work, which offers real-time decision accuracy, generalization
to novel workflows, low transaction mistakes, and the
emerging field of cognitive AI integrated with enterprise
software systems, makes a substantial contribution to the field.

The results have a range of implications from a managerial
and technical point of view. For example, integrating DRL
agents for business leaders implies that there is a move towards
more adaptive, data-driven decision engines with enterprise
agility as opposed to static-rule processes. Modular
architecture will allow IT alignment governance without
impeding speed of deployment across process domains. From a
technical standpoint, the study is equipped with a replicable
roadmap to train cognitive agents utilizing SAP event streams,
interpretable reward models, and performance stability under
complex workflow constraints. Additionally, the human-in-the-
loop feedback integration and policy blockade simulation
guarantee accountable audit scrutiny and trust, which are
fundamental for ERP systems in actual environments.

With regard to the future, research may build off this work
by implementing multi-agent reinforcement learning (MARL)
systems to manage decision making between different SAP
systems or multiple stakeholders. For example, one agent could
manage procurement decisions while another would manage
optimizing allocation of finances. Both would work toward
global objectives like efficiency in cash flow and risk
mitigation. Other noteworthy research challenges include the
use of federated learning to train agents in asynchronous
enterprise contexts without exposing sensitive information.
Furthermore, as ERP systems are transitioning to cloud-native
and event-driven frameworks, there is the possibility of
embedding microservice middleware composable ERP
platforms for Direct Reinforcement Learning (DRL) agents,
enabling smart orchestration of business processes across
multiple enterprises in real-time. All of the above combinations
could lead to advancements in the capabilities of autonomous,
resilient, and intelligent enterprise systems.

REFERENCES

[1] Klaus, Helmut, Michael Rosemann, and Guy G. Gable. "What is ERP?."
Information systems frontiers 2 (2000): 141-162.

[2] Salo, Leena. "Co-creating a new service design process for media
companies developing digital solutions in the business-to-business
market." (2017).

[3] Strozzi, Fernanda, et al. "Literature review on the ‘Smart Factory’
concept using bibliometric tools." International journal of production
research 55.22 (2017): 6572-6591.

[4] Van der Aalst, Wil MP, Martin Bichler, and Armin Heinzl. "Robotic

Journal of Intelligent Systems with Applications 2024; 7(1): 1-12 12

process automation." Business & information systems engineering 60
(2018): 269-272.

[5] khan Akram, Waseem. "Machine Learning and Artificial Intelligence in
Cloud-Based ERP: Strengthening Security and Performance." (2020).

[6] Willcocks, Leslie, Mary Lacity, and Andrew Craig. "Robotic process
automation: strategic transformation lever for global business
services?." Journal of Information Technology Teaching Cases 7.1
(2017): 17-28.

[7] Haas, Stefan, and Bince Mathew. ABAP Development for SAP
S/4HANA: ABAP Programming Model for Sap Fiori. Rheinwerk
Publishing, 2018.

[8] TAGLIAPIETRA, LORENZO. "AI-driven ERP: a case study enhancing
digitalization and automation of business processes."

[9] Mnih, Volodymyr, et al. "Human-level control through deep
reinforcement learning." nature 518.7540 (2015): 529-533.

[10] Aalst, Wil van der. "Process mining: data science in action." (No Title)
(2016).

[11] Dumas, Marlon, et al. "Fundamentals of Business Process Management-
Springer Berlin Heidelberg (2018)."

[12] Lacity, Mary C., and Leslie P. Willcocks. "A new approach to
automating services." MIT Sloan Management Review 58.1 (2016): 41-
49.

[13] Syed, Rehan, et al. "Robotic process automation: contemporary themes
and challenges." Computers in industry 115 (2020): 103162.

[14] Mehdi Saadallah, D., Abbas Shahim, and Svetlana Khapova. "Multi-
method Approach to Human Expertise, Automation, and Artificial
Intelligence." ICT Systems Security and Privacy Protection: 39th IFIP
International Conference, SEC 2024, Edinburgh, UK, June 12–14, 2024,
Proceedings. Vol. 710. Springer Nature, 2024.

[15] Jiang, Feibo, et al. "Distributed resource scheduling for large-scale
MEC systems: A multiagent ensemble deep reinforcement learning with
imitation acceleration." IEEE Internet of Things Journal 9.9 (2021):
6597-6610.

[16] Xu, Zhenyu, et al. "Dynamic scheduling of crane by embedding deep
reinforcement learning into a digital twin framework." Information 13.6
(2022): 286.

