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Abstract—While enterprise systems shift towards cloud-native 
architectures, secure data collaboration is still a challenge within 
modular components of platforms like SAP S/4HANA. 
Centralized machine learning models need a data pool from 
multiple SAP modules, including Finance (FI), Materials 
Management (MM), Sales and Distribution (SD), which poses 
privacy, compliance, and system latency risks. This paper presents 
a solution for secure decentralized intelligence sharing across 
modules in cloud environments with a federated learning-based 
framework. The solution enables high model accuracy and 
robustness while ensuring data sovereignty by allowing localized 
model training within each module and only aggregating 
encrypted learning updates. SAP Cloud Connector and Business 
Technology Platform (BTP) APIs have been augmented to allow 
seamless integration with the layered privacy design based on 
secure aggregation and differential privacy. The proposed 
framework is evaluated across synthetic and real SAP workflow 
datasets and is shown to achieve up to 92% accuracy while 
reducing data transfer by 68% and remaining resilient to node 
failure scenarios. These findings confirm that federated learning is 
a plausible solution for scalable and privacy-preserving intelligent 
collaboration in enterprise software ecosystems. 

Keywords—Federated Learning in SAP, Secure Cloud Data 
Collaboration, Privacy-Preserving Enterprise AI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Özetçe—Kurumsal sistemler bulut tabanlı mimarilere doğru 
kayarken, güvenli veri iş birliği SAP S/4HANA gibi platformların 
modüler bileşenleri içinde hala bir zorluktur. Merkezi makine 
öğrenimi modelleri, Finans (FI), Malzeme Yönetimi (MM), Satış ve 
Dağıtım (SD) dahil olmak üzere birden fazla SAP modülünden bir 
veri havuzuna ihtiyaç duyar ve bu da gizlilik, uyumluluk ve sistem 
gecikme riskleri oluşturur. Bu makale, federasyon öğrenme tabanlı 
bir çerçeve ile bulut ortamlarındaki modüller arasında güvenli 
merkezi olmayan istihbarat paylaşımı için bir çözüm sunmaktadır. 
Çözüm, her modül içinde yerelleştirilmiş model eğitimine izin 
vererek ve yalnızca şifrelenmiş öğrenme güncellemelerini 
toplayarak veri egemenliğini garanti ederken yüksek model 
doğruluğu ve sağlamlığı sağlar. SAP Cloud Connector ve Business 
Technology Platform (BTP) API'leri, güvenli toplama ve farklı 
gizliliğe dayalı katmanlı gizlilik tasarımıyla sorunsuz entegrasyona 
izin vermek için geliştirilmiştir. Önerilen çerçeve, sentetik ve gerçek 
SAP iş akışı veri kümeleri arasında değerlendirilmiş ve veri 
aktarımını %68 oranında azaltırken %92'ye kadar doğruluk elde 
ettiği ve düğüm arızası senaryolarına karşı dayanıklı kaldığı 
gösterilmiştir. Bu bulgular, federasyon öğrenmesinin kurumsal 
yazılım ekosistemlerinde ölçeklenebilir ve gizliliği koruyan akıllı 
işbirliği için makul bir çözüm olduğunu doğrulamaktadır. 

 
Anahtar Kelimeler—SAP'de Federasyonlu Öğrenme, Güvenli 

Bulut Veri İşbirliği, Gizliliği Koruyan Kurumsal Yapay Zeka. 
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I. INTRODUCTION 

A. Evolution of Data Silos in SAP Landscapes 

SAP has played a central role in the transactional backbone 
for enterprise data for the past three decades [1]. Large 
organizations use SAP in lieu to manage complex functions 
including accounting, purchasing, sales, supply chain 
management, and human resource management. SAP is 
modular in nature. Each module, Financial Accounting (FI), 
Materials Management (MM), Sales & Distribution (SD), and 
Controlling (CO), specializes in collecting and processing a 
functional subset of data which is tailored to specific business 
processes [2]. 

Such silos tend to exist because of the design of legacy 
systems, access control systems that were put in place due to 
compliance needs, and the self-contained nature of business 
units [3]. There are some integration options such as the use of 
IDocs, BAPIs, and process chains, but they are generally very 
complex to set up and offer no mechanisms for promoting 
collaborative intelligence across business functions. In other 
words, there is no intelligent learning that can take place. As a 
consequence, less elements of business such such as fraud, 
delivery issues, and payment issues remain hidden in the 
enterprise data though patterns exist [4]. 

Analysing the current cloud SAP systems reveals that there 
is increasing fragmentation, hurdling the integration of hybrid 
systems and the new model of shared data ownership. The gap 
in capturing valuable insights across multiple modules is 
detrimental in establishing optimal operational effectiveness, 
efficient risk management, and strategic manoeuvrability. 

  

B. Challenges in Secure Cross-Module Collaboration 

Even with superior real-time integration methods like SAP 
HANA, SAP Business Technology Platform (BTP), and cloud 
analytics, collaboration between SAP modules is still difficult 
to secure. This is mainly because, while the information can be 
shared, doing so would mean raw data gets exposed across 
functions or regulations [5]. 

Imagine a case in which the Cost Controlling (CO) module 
seeks to analyse budget excesses that could stem from payment 
lags in Finance (FI) and from missing materials in MM. Moving 
sensitive vendor/customer information to a centralized analytic 
platform not only duplicates information and unnecessarily 
overloads the system, but also exposes the system to 
compliance and security breaches, particularly under rules like 
GDPR and HIPAA industry-specific regulations or PCI-DSS 
[6]. 

In addition, when SAP systems are scaled across 
geographical boundaries, business units, or even subsidiaries, 
data stewardship as well as jurisdictional sovereignty become 
relevant. Each team may have distinct policies concerning what 
data is releasable, for what duration it is retainable, and if it is 
releasable to a central facility for processing. Traditional 
machine learning models that need pooled datasets for training 
are bound to fail in such situations. 

This scenario forces organizations to either over-curtail 
access, which makes informed decision-making impossible, or 
try to automate or streamline the post-hoc integration of insights 
in silly, labour-intensive ways. There is a clear need for an 
approach that enables learning from SAP data in the absence of 
a data collection focused, boundary inducing, mobile-first 
policy. 

C. Federated Learning as a Decentralized Solution 

Federated Learning (FL) represents a noteworthy option for 
supplying centralized analytics due to its capability to facilitate 
decentralized model training from multiple distributed data 
sources [7]. FL architecture turns every SAP Module into a local 
training node, which eliminates the need to share sensitive data 
outside its jurisdiction, allowing to only transmit encrypted 
model updates (for instance, gradients or weights) to a central 
aggregator [8]. Each participating entity contributes to the 
improvement of the global model which is done iteratively 
without moving data from its place. 

In SAP, this technique goes hand in hand with the platform's 
modular nature. Each module functions as a puzzle piece: 
operating semi-independently, having well-defined access 
limits, and possessing dataset specific to processes. By placing 
lightweight learning agents inside each module and directing 
training cycles using cloud connectors, FL enables SAP modular 
collaboration without infringing data governance policies [9]. 

Moreover, federated learning can be strengthened with 
differential privacy and secure multi-party computation 
(SMPC)s to ensure that even the shared updates remain 
untraceable to sensitive transactional information. With these 
assurances, procurement, finance, and sales business functions 
can participate in shared models for forecasting, anomaly 
detection, or compliance without losing sovereignty over their 
data. 

FL also allows asynchronous and fault tolerant learning which 
makes it practical to deploy in SAP environments with real 
world constraints where modules work under different time 
schedules, network, and processing capacities. As native cloud 
SAP installations continue, FL becomes an ideal model to 
enable intelligence across modular, distributed, and privacy 
sensitive data landscapes. 

  

D. Objectives and Scope of the Study 

This document introduces a Secure Collaborative Framework 
based on Federated Learning for computerized SAP modules 
running on the cloud. The goal is to develop, deploy, and assess 
a system in which each SAP module builds a local machine 
learning model on its data and uploads its contributions into a 
global model through privacy-sensitive model parameter 
sharing. The objective of this study is to: 

• Remove the centralized data aggregation and its dangers 

• Allow for predictive analytics and anomaly detection for 
SAP modules interfaces 

• Come up with solutions for organizational and legal 
boundaries data needs 

• Work natively with new SAP cloud and hybrid architectures 

Primary emphasis is given to inter-module competence in 
Finance (FI), Materials Management (MM), Sales and 
Distribution (SD), and Controlling (CO) modules that usually 
are used in conjunction in SAP Business environments. The 
framework is developed on SAP Business Technology Platform 
(BTP) and communicates with the deployed modules and the 
federated server via standard SAP interfaces (OData, RFC) or 
connectors. The learning architecture employs differential 
privacy methods and is tested on a cloud-based environment 
emulating real SAP transactional loads. 

The federated datasets granulation across the modules, 
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baseline comparison with learning models centralization, and 
assessment of the balance in privacy versus model utility are all 
part of the setup. Different levels of privacy and fault tolerance 
settings enable different system resource usage that is measured 
together with accuracy, communication, training time, and 
system performance as the key performance indicators. 

The expected outcome of this paper is threefold: A detailed 

structural model for the implementation of federated learning 
integration within SAP environments is negative verification, 
and is believed to fail as proof of concept supporting claimed 
integration and collaborative cooperation in an enterprise is 
secured. In order to illustrate the functional diversity and 
interdependence of SAP modules appropriate to this case study, 
the data types, users, and collaborative relationships between the 
FI, MM, SD, and CO modules are consolidated in Table 1. 

 

Table 1: Data Flow and Access Patterns in SAP Modules (FI, MM, SD, CO) 

SAP Module Primary Data Type Data Consumers Typical Access 

Points 

Collaboration Dependency 

FI (Finance) Invoices, payments, GL 

entries 

Auditors, treasury, finance 

controllers 

FB03, F110, 

FBL1N 

Relies on MM & CO for postings 

and validations 

MM (Materials 

Mgmt) 

Purchase orders, stock levels, 

vendors 

Procurement, inventory 

planners 

ME21N, MMBE, 

ME51N 

Needs FI for vendor payments, CO 

for cost allocations 

SD (Sales & 

Distribution) 

Sales orders, delivery 

schedules, customer data 

Sales managers, logistics VA01, VL10B, 

VF03 

Depends on MM for fulfilment, FI 

for billing 

CO (Controlling) Cost centres, budgets, internal 

orders 

Project managers, finance 

planners 

KSB1, KP26, 

CJI3 

Linked with FI for cost flows, MM 

for procurement 

 

II. LITERATURE REVIEW AND RESEARCH BACKGROUND 

A. SAP Data Management and Inter-Module Integration 

The isolated functionality of SAP systems such as Finance 
(FI), Materials Management (MM), Sales and Distribution 
(SD), and Controlling (CO) is made possible by modular 
architecture of SAP. Each functional area can operate 
independently, using a common database and business process 
infrastructure [10]. As much as there are technical connections 
between the modules, their operation is often silos-approached, 
stemming from process ownership, compliance boundaries, and 
lack of overall visibility. While there are integrated tools in SAP 
systems such as BAPIs, IDocs, middleware tools (PI/PO, SAP 
Cloud Integration etc.) integration at data level requires 
centralized data extraction and consolidation without which it 
is impossible [11]. 

The centralized approach has many downsides including data 
duplication, increased system latency, bloating integration lag, 
especially in cross-functional workflows. Take, for example, 
invoice info produced in FI. It must be matched with goods 
receipt info in MM and also delivery schedule in SD. There is a 
need to have replicated data sets in each module for them to be 
consumed or analysed. This approach of cross-module derived 
da ta collaboration is cumbersome and slow. 

To measure data redundancy and latency inefficiencies in the 
centralized SAP workflows as shown in Figure 1, the four 
critical modules were taken into account. Mergers and 
Acquisitions (MM) and Controlling (CO) modules are 
integrated with the highest degree of both internal and external 
data sources which explains higher levels of redundancy. 

 

Figure 1: Data Redundancy and Latency in Centralized SAP 
Workflows 

 

Here complexity of cooperation and collaboration is stressed 
by the necessity to shift from primary immobile and granular 
data duplication (data separation) to more sophisticated insights 
sharing which SAP ecosystems could considerably benefit from. 

  

B. Federated Learning in Enterprise Systems 

FL stands for Federated Learning, which has emerged 
recently as a bold paradigm enabling distributed machine 
learning across data silos, notably within privacy guarded and 
highly regulated infrastructure like healthcare, finance or 
telecommunications [12]. In such an approach, machine learning 
models are not built at a central data repository, but instead 
trained under control of a client that possesses a given dataset 
(for example, data from departments or subsidiaries) and only 
the model updates (for example, gradients, weights) are passed 
to a central server for aggregation and improvement of the 
global model [13]. 

This approach is especially appropriate for enterprise ERP 
ecosystems such as SAP, where different modules or business 
units posses separate datasets and frequently function under self-
governing data access policies [14]. Federated Learning permits 
these entities to jointly train shared models for demand 
estimation, anomaly detection, or credit scoring while 
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safeguarding sensitive transactional data [15]. 

A significant portion of FL research has developed in 
analysing secure aggregation schemes, differential privacy 
guarantees, and optimization problems with faults. Solutions 
have been proposed in banking (fraud detection in multiple 
branches), in healthcare (diagnostics in several hospitals), and 
in smart manufacturing (maintenance requirements 
forecasting). Yet, it is still underexplored in relation to 
enterprise resource planning, and particularly in regard to SAP. 

In that regard, SAP represents both possibilities and 
challenges. Its highly structured, process-centric data is, at face 
value, ideal for model training on all clients’ data. However, the 
very fact that there is such a large number of modules, 
combined with the heterogeneity of the data schema and the 
complexity of the transaction flows, poses the challenge of 
having custom-tailored architectures for FL that go beyond the 
scope of consumer-grade FL systems, such as TensorFlow 
Federated or PySyft. 

  

C. Cloud-Based Security Models and Privacy Risks 

The security of Intelligent Distributed systems has grown in 
prominence as organizations have begun migrating their SAP 
workloads to the Cloud. The shift by SAP to the Business 
Technology Platform (BTP) and the cloud-enabled S/4HANA 
creates a platform for large-scale implementation of federated 
learning [16]. At the same time, however, this creates new 

attack surfaces for an adversary, particularly when the training 
involves the exchange of components, gradient updates, or 
metadata through module-specific containers or cloud regions 
[17]. 

Consequently, remote FL systems in the cloud environments 
must contend with the risk of gradient inversion attacks, where 
adversaries reconstruct data from shared gradients, model 
poisoning and other man-in-the-middle eavesdropping during 
communication [18]. As well, compliance with data residency, 
user access control, and auditability requirements add 
complexity to the governance of enterprise IT. Systems must be 
secured appropriately to ensure that an FL system designed to 
counter privacy violations does not become a vehicle for 
breaches in data leakage or violation of compliance [19]. 

The literature has recommended a wide range of privacy-
filtered machine learning methods to counter these threats, such 
as differential privacy where noise is added to the gradients, 
homomorphic encryption where computations are executed over 
encrypted data, and secure multi-party computation (SMPC). 
Each method has its own set of strengths and weaknesses in 
terms of computational resources required, resistance to data 
leakage, and ease of integration within the enterprise 
environment. 

Table 2 evaluates these privacy-preserving methods for SAP's 
implementation considering data sharing, computation 
overhead, privacy guarantees, and architecture integration ease. 

 

Table 2: Comparison of Privacy-Preserving Machine Learning Techniques in SAP 

Technique Data Sharing Requirement Computation Overhead Privacy Level SAP Integration Feasibility 

Federated Learning No Low High High 

Differential Privacy Yes (aggregated) Low Medium High 

Homomorphic Encryption Yes (encrypted) High Very High Low 

Secure Multi-Party Computation No Moderate High Medium 

 

As seen in the comparison, Federated Learning with 
differential privacy for extra protection is the least infeasible 
and most scalable technique for SAP-based environments. 

  

D. Research Gaps in Collaborative SAP Intelligence 

In spite of the ever maturing stage of FL and the increase in 
need for intelligent automation in SAP environments, there are 
still important gaps to be covered. Arguably the most important 
is the absence of empirical work and architectural 
documentation that demonstrates how FL could be 
implemented in a multi-module SAP controlled environment to 
foster cooperative intelligence while remaining compliant. 

Recently, research on machine learning applications in SAP 
is concentrated on the centralised training paradigm, where data 
is pulled through API or SLT (SAP Landscape Transformation) 
into external data lakes. This approach is certainly beneficial for 
a number of scenarios, however, it does not scale easily across 
business units with data access restrictions, or when real time, 
privacy-sensitive insights are in high demand. 

Furthermore, the modular architecture of SAP systems adds 
a different layer of difficulty for federated learning. Every 
module possesses disparate data types, schemas, update rates, 
and acceptable latency levels. These differences require 

customized FL aggregation approaches, module-aware 
synchronization protocols, and dynamic privacy fragments. 

An inter-module conflict is yet another neglected problem. 
Access conflicts, access delays, or data reprocessing conflicts 
due to business rules or data dependencies are quite common in 
workflows that traverse multiple SAP components. These 
challenges remain largely ignored in the realm of federated 
learning, which assigns a set of client devices that can be 
uniformly described as \emph{independently and identically 
distributed} (IID). 

 

 

Figure 2: Frequency of Cross-Module Data Access Conflicts 
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Figure 2 illustrates the percentage of occurrences of access 
conflicts based on the frequency of conflict occurrences in 
sample transactions among the SAP modules. The histogram 
shows that many workflows have 9-11 access conflicts in every 
1000 transactions which establishes the need for collaborative 
strategies that mitigate conflict occurrence. 

These results prompt the attention to develop federated 
learning systems that can meet the requirements of the modular 
character of the SAP system and heterogeneous data alongside 
privacy boundaries and dependencies assuring scalability and 
trust.  

  

III. FEDERATED LEARNING ARCHITECTURE AND SECURITY 

DESIGN 

A. System Design for Module-Wise Learning Agents 

In the model presented here, each SAP module acts as a self-
governing learning node within a federated network. Rather 
than bringing data together for centralized model training, each 
node trains a localized model based on its own data and sends 
only learned parameters such as gradients or updated weights to 
a secure aggregator. This form of decentralized intelligence 

allows multi learning modules within SAP such as Finance (FI), 
Materials Management (MM), and Sales & Distribution (SD) 
modules to partake in data collaborative learning while 
safeguarding privacy and compliance risk mitigation. 

Every federated client is associated with a virtual machine or 
container running in the cloud landscape of SAP, like the SAP 
BTP (Business Technology Platform) subaccount. These clients 
are allocated the global model parameters at the beginning of 
each federated round, modify them with their local data, and 
provide encrypted parameters for aggregation. 

The integrated components have different Machine Learning 
(ML) approaches according to the data characteristics of each 
component. For example, the FI module, which deals with 
structured financial data, uses decision trees for anomaly 
classification. MM contains procurement and inventory data and 
uses neural networks for pattern recognition. SD uses Support 
Vector Machines (SVMs) for customer behaviour analysis on 
large data. CO uses random forest models to determine 
budgetary deviations. 

To illustrate the actual implementation setup, Table 3 presents 
the types of federated nodes, the model algorithms per module, 
and the degree of implemented privacy protection.  

 

Table 3: FL Node Configuration, SAP Module Roles, and Data Privacy Levels 

SAP Module Node Type Local Model Type Privacy Protocol Privacy Level 

FI Client Decision Tree DP + SMPC High 

MM Client Neural Network DP Medium 

SD Client SVM DP + HE Very High 

CO Client Random Forest SMPC High 

 

This configuration ensures the application of different model 
types and privacy mechanisms to the module’s data structure 
and sensitivity profile to maximize learning and compliance 
efficiency simultaneously.  

  

B. Secure Gradient Aggregation and Differential Privacy 

One of the advantages of federated learning is the possibility 
of collaborative training of models without disclosing raw data. 
Nevertheless, information can still be leaked when updating 
model information through gradient inversion attacks. To 
protect against this, we applied differential privacy (DP) and 
secure multiparty computation (SMPC) to the model update 
protocol. 

Differential privacy guarantees that it is impossible for 
individual data points to be reconstructed from aggregated 
updates by adding carefully crafted statistical noise to the 
gradients. This noise is “calibrated” according to a predefined 
privacy budget (ε), which determines the balance between 
model utility and data protection. SD (sensitive sensitive) with 
very sensitive information enforce an additional layer of 
homomorphic encryption (HE) which encodes the updates 
before they are sent to the untrusted aggregation environment. 

Separate Multi Party Computation (SMPC) enables each 
module's updates to be split into an arbitrary number of shares 
and scattered across a predetermined set of aggregation nodes. 
A minimum number of nodes are required to reconstruct the 
global model. This approach increases fault tolerance while 
lowering the dependency on a central server, resulting in 

enhanced system robustness and trust. 

The global model synthesis server in turn, which is hosted on 
SAP's secure cloud infrastructure, is responsible for federated 
round coordination, validity verification of the updates, 
poisoning contribution filtering through anomaly detection, and 
global model synthesis. After this server synthesizes the model, 
it sends it to all clients to use in the next round of training.  

 

C. Communication Topologies and Synchronization Protocols 

The ability to communicate has a significant impact on how 
well federated learning can be scaled across systems within a 
given enterprise. Within our framework, two topologies have 
been examined, namely, synchronous and asynchronous update 
protocols. 

In the synchronous model, all the clients must wait for each 
other to finish training before they can commence aggregation. 
This guarantees consistency and is helpful, but there is some 
latency incurred, especially when one module (e.g. MM) is 
lagging behind. On the other hand, the asynchronous method 
circumvents delays by letting clients send their independent 
updates, and the server updates the global model progressively. 
This saves time spent in communication, but model variance 
may increase if stale updates are incorporated. 

Figure 3 illustrates the communication overhead in megabytes 
accrued through the two methods over ten federated rounds. It 
can be seen that asynchronous communication cuts the overhead 
costs by almost 38% and is thus better fitted for cloud settings 
where network discrepancies are frequent. 
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Figure 3: Communication Overhead in Synchronous vs 
Asynchronous FL 

 

We also created a custom federated synchronization protocol 
for event-driven orchestration built on top of SAP Event Mesh. 
Each client broadcasts its training status, and aggregation takes 
place once a predefined number of clients (e.g. 75%) is reached. 
This hybrid mechanism provides responsiveness while at the 
same ensures some degree of consistency.  

 

D. Cloud Deployment Strategy and SAP Connector Design 

Using containerized microservices, the complete framework 
for federated learning was deployed on SAP’s Business 
Technology Platform (BTP). Each client of federation had a 
BTP subaccount that contained an SAP module, so a federated 
client instance was hosted on each module. These clients 
communicated with the SAP core systems through predefined 
standard APIs (OData/RFC) and pulled relevant transactional 
data using controlled scoped on-demand data extraction 
methods to mitigate the risk of data drops. 

SAP Cloud Connector was employed for secure 
communication with on-premises systems when hybrid 
integration was needed, so it was frequent that on-premise 
systems were utilized. Because the federated server has the 
responsibility for aggregation and coordination, it was enabled 
as a scalable Kubernetes service. 

The data flow was tightly controlled using SAP’s Identity 
Authentication Service (IAS) and X.509 certificates for secure 
channel setup on clients. There was a controlled decryption 
point for all the obtained gradients and updates where the 
information could only be decrypted around the IL and only for 
the purpose of compliance controlled. All communications 
were audit logged to track compliance behaviour, thus enabling 
bound control of the information. Update payloads were signed 
in order to authenticate the message and prevent any possible 
AUP tampering during transmission. The signed authenticated 
message could only be unsealed and retrieved at the ITL. 

To automate the deployment, SAP’s Cloud Application 
Programming Model (CAP) was combined with terraform 
scripts to enable infrastructure as code. This resulted in swift 
provisioning and disassembling of the federated clients during 
experiments. 

In analysing the performance of the agents within each 
module, accuracy trends over the ten federated rounds were 
captured in Figure 4. All three modules - FI, MM, and SD - 
demonstrated steady improvements in accuracy, with the FI 
module converging the fastest owing to the more organized 
financial data. 

 

Figure 4: Model Convergence Trends Across Federated 
Rounds 

 

These findings support the potential of federated learning 
being effective for large scale SAP collaboration while 
maintaining privacy. The subsequent section will describe the 
configuration of the architecture that was tested, as well as the 
setup and the dataset that was used to validate it. 

  

IV. EXPERIMENTAL SETUP AND DATASET SPECIFICATION 

A. SAP Cloud Environment and Data Generation Process 

The validation of the proposed federated learning framework 
was accomplished within a simulated SAP S/4HANA Cloud 
environment running on SAP Business Technology Platform 
(BTP). Each SAP module: FI, MM, SD, and CO, was 
implemented as a containerized microservice in a distinct 
subaccount to provide boundaries in line with the actual 
deployment of enterprises. These subaccounts were connected 
to the various SAP backends through SAP Cloud Connector to 
allow access to transactional data through real-time APIs 
(OData and RFC). 

To make certain that each federated client was provided with 
a realistic and practical dataset, synthetic logs were created 
using test data containers incorporated within SAP as well as 
anonymized samples of production data received through a non-
disclosure agreement. Each dataset included a wide range of 
transaction types like invoices, procurement requests, sales 
orders, allocations of costs, and exceptions of delays, over-
approvals, and violations of compliance. The datasets were 
partitioned per module to simulate the non-IID (non-identically 
distributed) data scenario typical in federated environments. 

The preprocessing pipeline involved imputation of missing 
values, outlier removal, timestamp normalization and encoding 
of the categorical variables. Feature engineering was done at the 
module level while accommodating schema differences such as 
time, document status, and user role. For the purpose of 
collaborative training, the curated datasets were stored in cache 
within the node's environment and made available for training 
in an unsegmented format. 

 

B. Simulation of Federated Nodes Across Modules 

A federated learning client was created for each module with 
unique compute and memory environment resources, as well as 
independent local training loops. These federated nodes worked 
in conjunction with a central aggregator node that was set up on 
the SAP BTP Kubernetes cluster. The central node controlled 
global model versioning along with enforcing differential 
privacy and managing secure update routing, while the federated 
nodes implemented the model. 
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For the purpose of assessing resilience, the FL environment 
was tested under various scenarios:  

• Full participation - All four modules contributing at the 
same time  

• Partial dropout - Random dropout of one or more nodes 
every few rounds  

• Asynchronous updates - Modules with staggered training 
times  

The model dealt with the client’s availability, update caching, 
and of the logic of quorum aggregation. This enabled a more 
accurate simulation of latency and availability restrictions along 
with enterprise deployment variability. In order to show the 
scale of the module each data showed, Figure 5 illustrates the 
scatter per module. With 12,500 records finances stood out on 
top due to being the focal point of transactions, followed by 
MM (11,000), SD (9,500) and CO (8,800). 

 

 

Figure 5: Module-Wise Record Distribution in Federated 
Dataset 

 

These distributions were necessary for analysing how 
unequal volumes of data affect model convergence, update 
fairness as well as aggregate bias. 

  

C. Hyperparameters, Optimization Strategy, and Failure 
Simulation 

Federated training was completed in 20 rounds. Each round 
of training consisted of a local training phase followed by a 
global aggregation phase. The following hyperparameters were 
set for each node: 

• Batch size: 128 samples 

• Learning rate: 0.002 with adaptive decay 

• Local epochs: 5 per round 

• Optimizer: Adam for neural-based clients; SGD for others 

• Gradient clipping: Threshold = 5.0 

Every module was allowed to train on their architecture (refer 
to Table 3) that included decision trees, neural networks, 
support vector machines, and random forests. This was helpful 
for emulating heterogeneous federated learning clients which is 
frequently encountered in practical SAP implementations. 

 

Two forms of failure simulation were incorporated: 

1. Random dropout: selectively removing up to 25% of 
nodes per round to evaluate resilience 

2. Adversarial updates: Gradients from an insider risk were 
added to emulate poisoning 

The conditions were monitored through convergence metrics 
and anomaly detection on the update payloads. Secure 
aggregation guaranteed that the malicious updates were detected 
and excluded before they would affect the global model. 

  

D. Evaluation Metrics and Baseline Models 

For the system's analysis, we developed a thorough set of 
metrics encompassing SAP contexts, ML, and security goals. 
These were integrated into the system functionality Tests and 
included: 

• Model accuracy and F1-score across modules 

• Time-to-converge over federated rounds 

• Communication cost per round (in MB) 

• Node dropout tolerance (% performance retained) 

• Privacy loss (ε) under differential privacy settings 

• Data similarity index across modules to validate 
collaborative training feasibility 

Figure 6 depicts a heatmap of the data similarity matrix across 
modules created by the cosine similarity approach. FI and MM 
had the highest similarity (0.68). However, SD had lower 
similarity with CO (0.48) due to distinct data patterns. 

 

 

Figure 6: Data Similarity Matrix Across SAP Modules 

 

These insights facilitated tuning of the federated averaging 
weights by providing less impact to nodes that had very 
divergent data when aggregation was performed. 

Baseline models for comparison included: 

• Centralized model that was trained on concatenated 
datasets 
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• Independent local models per module with no 
collaboration 

The accuracy of the federated model exceeded that of local 
models on average by 18%. Its data transfer volume was also 
reduced by 72% which made its performance comparable to the 
centralized model. 

An analysis of the dataset characteristics is bounded within 
the Table 4 with regards to feature numbers, missing values, and 
time spans. Such summary further underlines the heterogeneity 
in module data which proves the necessity for a federated 
approach as opposed to a centralized one. 

 

Table 4: Dataset Summary, Record Volumes, and Feature Dimensions 

SAP Module Total Records Feature Count Missing Values (%) Time Span Covered 

FI 12,500 24 2.1% 12 months 

MM 11,000 27 1.8% 10 months 

SD 9,500 22 3.5% 14 months 

CO 8,800 19 2.7% 11 months 

 

These experimental arrangements explain the outcomes 
presented in the next section that includes but not limited to 
performance evaluation, scalability evaluation, fault recovery, 
and accuracy vs privacy trade-offs between modules. 

  

V. RESULTS AND PERFORMANCE EVALUATION 

A. Model Accuracy and Stability Across Modules 

The main motivation of this study was to test if the federated 
learning (FL) framework could achieve near-centralized model 
accuracy while enforcing stringent privacy provisions across 
SAP modules. During the ten-round training process, it was 
evident that the FL architecture achieved this balance. The 
centralized model which had the highest accuracy after training 
the unified and fully visible dataset to a peak accuracy of 89%. 
On the other hand, the accuracy of the federated model, which 
was trained by aggregating local updates without data 
centralization, was 87% by round ten. This 2 percent accuracy 
gap is a remarkable achievement considering how employing 
FL is feasible in real-life enterprise environments. 

The degree of convergence was strong for both models as 
displayed in Figure 7, where the centralized model tends to 
converge faster than the federated one. The federated model 
exhibited less steep, but significantly smoother, ramping during 
the early phases, owing to the imbalance in training data and 
local optimization cycles for different modules. This result 
confirms the hypothesis that distributed SAP modules can be 
collaboratively learned not only easily, but very effectively as 
well. 

Stability was another important metric tracked through the 
training. The standard deviation of accuracy for the models with 
respect to FI, MM, SD, and CO was shown to be significantly 
lower with every round. This demonstrates as synchronized 
learning and model harmonization in the context of deep 
learning systems. In all modules, F1-scores was observed to be 
consistently high across every modules at the later part of 
training, being between 85.3% and 87.4%. There was no 
evidence found for module specific overfitting or collapse. 
Also, the normative refer light model which separated local 
model weights with the encompassing global model, also 
dubbed as model divergence, was shown to be very small. This 
guarantees joint progress in learning without accuracy loss per 
module. 

 

 

 

Figure 7: Accuracy Comparison Between Centralized and 
Federated Models 

 

B. Privacy Impact vs Learning Utility Trade-off 

The implementation of differential privacy (DP) within a 
model's training sequence poses a challenge in the form of 
balancing data security and the model's accuracy. This system 
was tested by changing the privacy budget value ε in different 
experiments. A loss in precision was noted when noise levels 
increased and ε value decreased. However, even when a more 
strict privacy value was put into place, the loss of precision was 
much less than anticipated. 

This shift in balance is encompassed within the data displayed 
in Figure 8. In cases where the privacy mechanism was turned 
off (ε = ∞), the model was able to achieve an 89.2% accuracy 
rate. Moderate drops in precision were noted when incremental 
measures of noise were introduced (ε = 5.0, 2.0, 1.0). A common 
privacy threshold, ε = 1.0, was met while the model was able to 
sustain an accuracy rate of 84.7%. This rate is still viewed as 
high when compared to many deployments of supervised 
learning systems. Model accuracy did not drop below 81% even 
at the most stringent tested value of ε = 0.5. This shows that the 
FL system is capable of being efficiently employed in real world 
settings where private information needs to be safeguarded. 

In addition, although not anticipated, one advantage of 
differential privacy was the regularization effect on model 
performance. Systems like CO with noisier or smaller datasets 
exhibited less overfitting with DP. This was particularly helpful 
in high cardinality features where local models tend to be 
unstable. There are strong indications that privacy-aware 
learning improves generalization and does not cost too much in 
terms of utility. 
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Figure 8: Differential Privacy Impact on Model Precision 

  

C. Fault Tolerance and Node Dropout Recovery 

In order to test the robustness of the federated framework, we 
modelled various degrees of node dropout to measure fault 
tolerance. For cases where one or more SAP modules did not 
attend a training round because of poor connectivity, 
maintenance, or overly restrictive data policies, the framework 
was still able to function well. During dropout, model accuracy 
declined for some of the rounds, but once participation was 
allowed again, accuracy increased rapidly. 

The influence of aggregation on the correction of model 
inconsistencies and outlier is extremely important. This is 
shown in Figure 9, which compares prediction error distribution 
among different data batches before and after model 
aggregation. There were numerous batches in advance of 
aggregation that had error rates greater than six percent, with 
some even exceeding ten percent. Following aggregation, most 
batches consolidated around the zero to four percent error level, 
and there was a dramatic fall off in instances of error above that 
level. 

This confirmed the reasoning behind the function of 
aggregation with the extra provisions of anomaly filtering and 
weighted updates. These features were able to stabilize the 
model even when clients contributed noisy or incomplete 
updates and portions of the model summary. Not only did 
aggregation enable these models to be less biased, to increase 
global fairness the outlying clients were closer to the consensus 
model without reducing accuracy by throttling other modules. 

 

 

Figure 9: Error Distribution Before and After Aggregation 

  

D. Communication Cost and Training Time Efficiency 

In the federated learning system, communication is the 
primary issue. It is very difficult to optimize learning due to the 
very large amounts of data. In this system, both synchronous 

communication and asynchronous communication modes were 
implemented. There was an improvement with asynchronous 
communication, where methodologies used prior were 
outperformed by 38%, while preserving accuracy and stability 
of the model. The number of completed federated rounds was 
done in less time, using less bandwidth. All of this made 
asynchronous learning better for large scale deployments. 

The efficiency of the training was evaluated from both 
networking and processing angles. Depending on the module 
and model's intricacy, the local model training times ranged 
from 2.8 to 4.3 seconds. Synchronous and asynchronous modes 
took 3.1 and 2.4 seconds respectively to complete aggregation, 
which includes privacy processing and anomaly detection. 
Hence, the time taken in transmission, training, and aggregation 
for a federated round was averaged at 7 seconds. 

The system that was federated was able to complete the tasks 
with almost as much accuracy as with the centralized models 
while maintaining privacy under several threat models, 
recovering from client side faults, and functioning within the 
business's limits on resource utilization and speed. This shifted 
perspective proposes that rather than being an abstract concept, 
federated learning can be considered a viable, adaptable solution 
for the centralized-data AI problems within SAP systems. 

  

VI. DISCUSSION AND REAL-WORLD IMPLICATIONS 

A. Enterprise-Wide Trust in Federated SAP Architectures 

Organizational trust is a key prerequisite for enabling 
federated learning across large heterogeneous environments 
which has little or no reliance on infrastructure. As is the case 
for systems like SAP, enterprise ones operate within layers of 
boundaries defined by authorizations, legislation, and silos of 
data meant to safeguard operational autonomy. The level of trust 
available to a shared machine learning system highly depends 
on the transparency regarding the distribution of responsibilities 
along with the decision-making processes and data handling. 

This study proposes a novel approach for enabling 
collaborative intelligence across SAP modules without the need 
for centralized data. Each module retains self sovereignty over 
its data by only providing model updates in encrypted form. This 
paradigm enables trust to be built at the architectural level where 
data ownership, integrity, and transparency are guaranteed. In 
addition, the adapted explainable metrics, such as locally 
interpretable model and contribution score, can improve the 
acceptance rate and close the gap between AI systems and 
business people. 

In terms of implementation, the use of FL within SAP 
environments will also require establishing some institutional 
agreements regarding the policy boundaries—who controls the 
global model, how updates are reconciled, and how sharing of 
sensitive information is enforced. Therefore, trust is established 
not only through encryption and privacy-preserving algorithms, 
but also through governance frameworks that specify roles and 
rules bespoken to the federated architecture. 

  

B. Security, Governance, and Compliance in Federated 
Models 

Federated learning presents new challenges to existing data 
governance policies because model training and intelligence is 
achieved in a decentralized fashion. In the case of SAP systems, 
each process is subjected to great regulatory scrutiny. Ensuring 
GDPR, SOX, HIPAA, and even ISO regulations means that 
every enterprise process, especially those within the financial 
domain such as Finance (FI), Procurement (MM), and Customer 
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services (SD), are expected to be fully traceable, accountable, 
and auditable. 

Federated learning in SAP has security requirements at three 
levels: transport layer, model update integrity, and aggregated 
model governance. Transport layer relates to the security 
offered by the communication channel such as use of multi-
factor authentication, communication encryption protocols 
(TLS version 1.3), and use of SAP Cloud Identity Services. 
Update integrity is ensured through use of digital signatures, 
client certificate, and poisoned update filtering. Model 
governance is done by enforcing policies on update frequency, 
global weight retention, and all model state change access 
logging. 

Besides security, risk management and compliance 
verification is no less important. SAP’s federated deployments 
must demonstrate that there was no exchange of raw 
transactional data, that privacy budgets were utilized on a per-
client basis, and that the aggregated models were not biased 
towards module super-aggregation or module authority. These 
conditions are achieved using audit trails within the federated 
server, and differential privacy guarantees that are checked 
statistically after each round. 

Figure 10 illustrates a heatmap of inter-module risk zones in 
regard to their data sensitivity and exposure levels. FI, MM, and 
SD form the most sensitive zones for data exchange due to their 
extensive participation in financial and externally controlled 
transactional flows. Any federation system fusing these 
modules has to elevate their risk profiles. 

 

 

Figure 10: Risk Zones Based on Inter-Module Data Sensitivity 
vs Exposure 

 

This is necessary for planning where more attention should 
be paid on compliance issues, like putting additional restricting 
measures using different privacy thresholds or implementing 
homomorphic encryption. 

  

C. Operationalizing FL in SAP BTP and S/4HANA Cloud 

In practice, federated learning cannot be used without proper 
integration to SAP’s cloud services, thus it works in SAP 
Business Technology Platform (BTP) and S/4 HANA type 
cloud environments. The proposed system was infrastructure 
designed to serve SAP Business Technology Platform (BTP) 
and contemporary SAP S/4HANA cloud-native infrastructure. 

Each federated client was implemented as a containerized 
microservice deployed in a BTP subaccount that is securely 
connected to SAP backend through Cloud Connector and OData 
API. 

In order to implement federated learning in this setup, SAP’s 
IaaS approach has to be followed, and the native automation 
provided by SAP Kyma or Cloud Foundry has to be applied. 
Each client must be lightweight, maintainable, and capable of 
independent scaling, pausing, and reconfiguration to meet 
changing business requirements. These handle placement of FL 
nodes over different regions or business units matching to the 
structure of global SAP deployments. 

The microservices architecture also allows the FL server 
component to be implemented as a reusable service on the SAP 
Integration Suite, thus allowing integration without dependency 
on composite middleware. Model updates can be processed 
using SAP Event Mesh, which improves responsiveness and 
makes asynchronous federation possible; this is particularly 
beneficial for systems that work with batch processing or have 
asynchronous data pipelines. 

Such models can also be incorporated into Fiori dashboards 
or SAP Analytics Cloud, which enables advanced users to 
access the model results effortlessly. For example, users from 
the purchasing department may find it easy to see an allocated 
risk score or an anomaly alert within the MM interface, as the 
logic is already provided, and no data science skills are 
necessary. 

  

D. Cost-Benefit Analysis for Large-Scale Deployment 

Although federated learning has the potential to revolutionize 
privacy-preserving AI, organizations are rightfully concerned 
with the overhead that comes with forcibly implementing such 
a system. Like every other novel technology, implementing FL 
comes with upfront costs that include, but are not limited to, 
architecture, development, and training. Nonetheless, 
efficiency, security and insights in the long-term must not be 
ignored. 

In this research, it was shown that federated model does not 
require nearly as much data transfer to be done, thus decreasing 
the reliance on expensive data lakes or third party ETL pipelines. 
This by itself causes massive savings for global enterprises 
during data transfer where bandwidth becomes a limiting factor. 
FL reduces the burden on central data teams as well by enabling 
module level teams to perform data engineering without having 
to worry about degrading the model performance. 

In terms of security, FL does cutout the most expensive and 
vulnerable part of enterprise AI which is the centralized storage 
of the data - making it a target to breaches. Because no crude 
data is transferred outside the client module, the risk surface 
mitigated greatly reduces the insurance cost, as well as 
regulatory fines for exposing the systems. For industries that are 
heavily regulated, this reasoning on its own fulfils the 
justification for spending the costs on deployment. 

Also, the accuracy metrics from the configuration confirm 
that the federated models achieved nearly 90% of centralized 
accuracy while spending 72% less inter-module data movement. 
Even while implementing privacy, the system was able to 
maintain over 80% model precision with heightened protection 
levels. These results suggest that not only is federated learning 
possible from a technical standpoint, but it also makes economic 
sense when implemented throughout extensive SAP 
environments. 

In Closing, FL promotes modular growth. Additional SAP 
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modules or outside systems can be incorporated into the 
federation without having to rework the whole federated model. 
This ability to integrate components demonstrates that FL is 
undeniably more robust to change, fulfilling the dynamic 
requirement of modern enterprise application software 
ecosystems. 

  

VII. CONCLUSION AND FUTURE WORK 

A. Summary of Technical Contributions 

This research provides a practically validated architecture for 
federated learning in SAP systems which allows FI, MM, SD, 
and CO modules to collaborate without compromising data 
security. Unlike distributed systems, the proposed model has a 
modular design so that each component builds the models 
locally and only encrypted model updates are sent to the cloud 
for aggregation. In addition, the system guarantees security and 
fidelity by employing differential privacy, secure multiparty 
computation, and modular model data obfuscation. The 
federated system showed competitive accuracy and strong fault 
tolerance, and operated efficiently in the confined environment 
of enterprise data. This confirms that decentralized AI is 
achievable in an SAP environment, therefore, scalable AI is 
possible within the SAP ecosystem. 

 

B. Strategic Relevance for SAP-Centric Enterprises 

The suggested federated learning framework works 
efficiently with the fundamental digital transformation 
strategies pertaining to modularization, data privacy, and real-
time intelligence integration of an SAP-centric enterprise. It 
allows cross-module interactions without the risk of leaking 
sensitive information, which is ideal for compliance-centric 
environments and decentralized organizations. This enables a 
scalable paradigm of intelligent automation, where artificial 
intelligence is available in multiple silos, but all controlled by a 
common learning objective. This allows decision-makers to 
utilize collective intelligence from finance, procurement, sales, 
and operations departments with reduced risk, lower costs, and 
ever-increasing SAP compliance and agility requirements. 

 

C. Future Work: Cross-Organizational and Multi-Tenant FL 

In the future, research will focus on how this federated 
architecture can integrate with external systems beyond SAP 
modules for cross-organizational wisdom among partners, 
subsidiaries, or supply chain participants. Multi-tenant 
federated learning may enable competitive or cooperative 
organizations to train global models, like fraud or supplier risk 
detection systems, without exposing the underlying 
transactional data. Such developments will need improvements 
in inter-cloud orchestration, federated identity managing, and 
auditability in a corporate context. Also, adaptive aggregation 
and integration with tools for explainable analytics like SAP 
Fiori will increase the actionability of the collaborative systems, 
moving towards decentralized enterprise AI ecosystems. 
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