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Abstract—Distributed sensors and interconnected processes 
give rise to intricate and high frequency event sequences in 
industrial monitoring systems. These events are critical for 
enabling proactive fault detection, maintenance scheduling, and 
operational optimization. Predictive reasoning facilitates these 
tasks. However, the prominent issue within industrial 
environments is capturing the intricate spatiotemporal 
dependencies owing to the limitations of RNNs and LSTMs. This 
paper presents a novel approach called Transformer-Based 
Temporal Graph Neural network (TGTN). Leveraging multi-head 
attention, the TGTN forms dynamic temporal graphs of event 
sequences and captures sensor and time node interdependencies. 
By imposing temporal encoding, graph construction, and 
transformer layers, the model learns contextual embeddings, 
significantly improving event prediction accuracy, and thus 
enhancing system interpretability. Empirical validation is 
performed using real world datasets from the industry which show 
the proposed model outperforms existing accuracy, robustness, 
and inference latency baselines. TGTN also demonstrates 
resilience to noisy signals, empty events, and complex topological 
structures. This study provides a robust framework for the 
exploration of deploying intelligent self-updating models for 
monitoring systems embedded within mission critical industries. 

Keywords—Temporal Graph Neural Networks, Event Sequence 
Prediction, Industrial Monitoring Systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Özetçe—Dağıtılmış sensörler ve birbirine bağlı süreçler, 
endüstriyel izleme sistemlerinde karmaşık ve yüksek frekanslı olay 
dizilerine yol açar. Bu olaylar, proaktif arıza tespiti, bakım 
planlaması ve operasyonel optimizasyonu etkinleştirmek için kritik 
öneme sahiptir. Tahmini akıl yürütme bu görevleri kolaylaştırır. 
Ancak, endüstriyel ortamlardaki belirgin sorun, RNN'lerin ve 
LSTM'lerin sınırlamaları nedeniyle karmaşık uzaysal-zamansal 
bağımlılıkları yakalamaktır. Bu makale, Transformatör Tabanlı 
Zamansal Grafik Sinir Ağı (TGTN) adı verilen yeni bir yaklaşımı 
sunmaktadır. Çok başlı dikkati kullanarak, TGTN olay dizilerinin 
dinamik zamansal grafiklerini oluşturur ve sensör ve zaman 
düğümü karşılıklı bağımlılıklarını yakalar. Zamansal kodlama, 
grafik oluşturma ve transformatör katmanları uygulayarak, model 
bağlamsal yerleştirmeleri öğrenir, olay tahmin doğruluğunu önemli 
ölçüde iyileştirir ve böylece sistem yorumlanabilirliğini artırır. 
Deneysel doğrulama, önerilen modelin mevcut doğruluk, sağlamlık 
ve çıkarım gecikmesi temel çizgilerinden daha iyi performans 
gösterdiğini gösteren endüstriden gerçek dünya veri kümeleri 
kullanılarak gerçekleştirilir. TGTN ayrıca gürültülü sinyallere, boş 
olaylara ve karmaşık topolojik yapılara karşı dayanıklılık 
göstermektedir. Bu çalışma, görev açısından kritik endüstrilere 
gömülü izleme sistemleri için akıllı kendini güncelleyen modellerin 
dağıtımının keşfi için sağlam bir çerçeve sunmaktadır. 

 
Anahtar Kelimeler—Zamansal Grafik Sinir Ağları, Olay Dizisi 

Tahmini, Endüstriyel İzleme Sistemleri. 
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I. INTRODUCTION 

A. Motivation: The Rise of Industrial Event Stream 
Monitoring 

For the past decade, industrial monitoring systems have 
undergone considerable changes. In the past, these systems 
relied on static threshold-based rule engines, but now they 
utilize intelligent infrastructures that are real-time and sensor 
rich [1]. As industrial environments become more automated 
and interconnected, the complexity and volume of data 
increases significantly. These environments now utilize 
heterogeneous sensors that capture multivariate time-series data 
in the form of events, which include machine state changes, 
fault warnings, and environmental readings alongside control 
signals [2]. 

While event streams are useful for predicting system 
behaviour, extracting value from them in real time necessitates 
sophisticated forecasting and modelling strategies that grasp the 
progression of signals over time and the inter-event 
relationships across different subsystems [3]. To illustrate, the 
increase of temperature at one sensor may, through a direct 
route, be due to the drop in coolant pressure from a 
neighbouring unit. This dependency, although not linearly time-
aligned, has critical implications for system dependability and 
reliability [4]. 

The growing use of IoT in industries and their 
interconnections through Industrial 4.0 emphasises the 
expectation for accurate, dependable, and scalable models 
capable of real-time forecasting for event sequencing [5]. In 
virtually all industrial sectors, including manufacturing, power 
generation, oil and gas, and smart grid management, 
abnormalities, their forecasting, and temperature event 
sequencing are critical in cleansing costly downtimes, asset life 
span, worker safety, and overall industrial efficiency [6]. 

  

B. Limitations of Sequential Models in Complex Industrial 
Systems 

Most industry centres depend heavily on automated sequence 
prediction systems as system RNN implementations or its gated 
derivatives like RNNs with Long Short Term Memory 
(LSTMs). These models perform best when data is organized 
and aligned, which is not the case for industrial systems. 
Associative data streams: Time series data streams from sensors 
are assumed active at different time zones (asynchronous), 
timed (sparse), or functionally linked (multiscale) [7]. 

Like most models using RNN libraries, RNN-based 
approaches suffer from known limitations like gradients 
vanishing, inadequate memory, or absence of sparsity and long-
range dependencies. Another drawback is wide spatial 
representation, which considers the sensor network's origin data 
without attention to cross-sensor interaction fault propagation 
paths or system-wide behavioural patterns. This absence of 
attention leads to difficulty in formulating system integration. 

The self-attention mechanisms turned out to be the winning 
horse for modelling long-term dependencies on sequential data, 
leading to the rise in popularity of transformer-based models. 
However, their efficiency degrades when faced with real 
industrial raw time-series data, which does not conform to a 
predefined structure, often leading to non-scalability issues. 
More fundamentally, they still disregard the underlying graph-
like topology of industrial systems, where each sensor or 

subsystem is potentially interlinked with others in a non-
sequential, relational fashion. 

C. Temporal Graph Structures and Attention Mechanisms 

More recently, attempts have been made to model data where 
the relationships between entities are critical using Graph Neural 
Networks (GNNs) [9]. Adding temporal dynamics, as in Spatio-
Temporal Graph Neural Networks (STGNN) or Temporal 
Graph Networks (TGN), permits the modelling of not just 
spatial dependencies amongst nodes, but their patterns of 
interactions over time as well. 

This view of temporal graphs complements industrial 
systems’ behaviour in practical terms. Each event in the system 
can be interpreted as a node of a time-structured graph, while 
edges can represent dependencies like co-occurrence, delay-
based causality or shared operational context. These graph forms 
support the intuitive, comprehensible modelling of complex 
interactions between machines, processes and environments 
[10]. 

Employing attention mechanisms from transformers into 
temporal graph models allows for focusing on more critical 
relationships in the spatial and temporal domains. This provides 
better generalization, increased noise robustness, and the ability 
to explain which past events or nodes played a key role in a 
prediction. The combination of graph-based reasoning with 
attention-driven sequence modelling is a leap forward for 
industrial event prediction, especially for large dynamic 
systems. 

  

D. Contributions and Scope of the Present Work 

This paper introduces a new framework: the Transformer-
Based Temporal Graph Neural Network (TGTN), designed to 
predict future event sequences in industrial monitoring systems. 
The TGTN architecture is built from raw multivariate sensor 
streams, interpreting the collection of events as temporal graphs, 
and modeling spatio-temporal interaction with multi-head 
attention using a transformer architecture. In contrast to 
traditional RNNs or CNNs, TGTN captures topological and 
temporal relations, allowing for event sequence prediction 
despite data loss, asynchronous signals, and sensor drift. 

Our primary contributions include: 

• An effective approach to graph construction that 
dynamically maps event streams into operationally relevant 
temporal graphs for industrial environments. 

• A hybrid attention algorithm that encapsulates the dynamics 
of nodes and sequences across time. 

• A trainable model framework with multi-step event 
prediction capabilities, which integrates transformer blocks in 
the graph structure. 

• An all-encompassing assessment on practical datasets from 
various industries, which showcases practical industry accuracy, 
recall, resilience to failure, and speed improvements over 
existing baselines. 

In order to provide the background needed to understand the 
difficulties associated with monitoring an industrial system, we 
show Table 1, which lists important attributes of the system 
along with the types of sensors and describes the problems to be 
solved by a given predictive learning framework. 
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Table 1: Characteristics of Industrial Monitoring Systems 

Aspect Typical Features Modeling Challenges 

Event Type Discrete (alarms, status changes), Continuous (temperature, pressure) Irregular intervals, missing values 

Sensor Modality Vibration, Pressure, Temperature, Acoustic, Electrical Multi-modality fusion, sensor drift 

Network Topology Mesh, Hierarchical, Point-to-Point Latency, synchronization errors 

Sampling Frequency Milliseconds to Seconds Temporal alignment, noise 

Fault Detection Latency Milliseconds to Minutes Requirement for real-time inference 

Temporal Dependency Short-term & Long-term, Often Non-linear Capturing hierarchical temporal structure 

Cross-System Interaction Yes – interlinked subsystems and processes Propagation effects, event correlation 

 

This table captures the need for event prediction models in 
industrial systems to be contextually aware, temporally deep, 
and noise-robust. 

  

II. LITERATURE REVIEW AND CONCEPTUAL FOUNDATIONS 

A. Event Sequence Prediction in Time-Series and Graph 
Domains 

Historically, the problem of event sequence prediction has 
been addressed using a time-series approach and utilizing 
techniques such as the autoregressive integrated moving 
average model (ARIMA), Hidden Markov Model (HMM), and 
sequentially RNN and LSTM neural networks. While these 
methods perform well in environments with stationary and 
linear data, they face significant challenges in industrial 
contexts where dependencies are non-linear, sequences are 
asynchronous, and interdependencies between sensors are 
intricate [11]. Short- and mid-range temporal dependencies can 
be captured by RNNs and LSTMs, however their – limited 
memory and inherent sequential structure make long-range 
sequence modelling challenging. 

The boundaries of industry have become more complex with 
the emergence of event-rich sensor cyber-physical systems. 
Machines that are equipped with sensors typically produce 
event data that is aligned causally or contextually. This has 
sparked interest in sequence modelling using graph-based 
paradigms. Graph-based techniques, especially Graph Neural 
Networks (GNNs), enable the representation of sensor and unit 
dependencies in an industrial plant as a graph, allowing 
message-passing to encapsulate these dependencies [12]. The 
drawback is the assumption GNNs make of being fixed or static 
graphs, thus neglecting the dynamic temporal change of 
relationships which is critical in scenarios where there is time-
sensitive failure progression or state transitions. 

 

B. Evolution of Graph Neural Networks and Temporal 
Extensions 

The focus of research has shifted towards developing 
frameworks for Graph Neural Networks which consider time as 
an integral component to be factored into learning. Earlier 
attempts like Spatial-Temporal GNNs tried to implement 
temporal filters on static graphs aiming to achieve dynamic 
behaviour, but more advanced structures like Temporal Graph 
Network (TGN) have since developed aiming to model 
interactions as time-stamped sequences that evolve both the 
node and edge dynamics over time [13]. The twinning of 
memory modules and attention mechanisms with time-ordered 
updating of node embeddings allows TGNs to maintain the 
temporal context. 

Attention mechanisms have yet to be integrated into graph-
based systems due to the constraints posed by recurrent message 
passing architectures, which repeatedly cycle back to earlier 
steps in the graph. Work with long sequences of data or 
extensive scaling still creates challenges [14]. However, more 
recent work adds attention to the structure of the graph itself. 
These structures enable the graph reasoning and long-range 
temporal attention interwoven into a single framework, which is 
particularly useful for industrial level systems where multiple 
sensors are active throughout different time frames [15]. 

The older models and the new models were compared, and 
their merged results were illustrated through benchmarks on 
event sequence prediction tasks using GNNs and transformers. 
The results have been recorded in the (Figure) below. RNNs and 
LSTMs offer a respectable baseline, with accuracy metrics of 
72.5% to 75.1%. GAT and TGN, which are graph-based models, 
boosted these numbers to 78.3% and 81.7%, respectively. 
Further, self-attention-based approaches push these to 84.2% 
with transformer models. Finally, our architecture TGTN rises 
above all baselines set, getting 89.6% accuracy. This proves the 
superiority of the temporal graph structure paired with 
transformer attention. 

 

 

Figure 1: Accuracy Benchmarks from Prior GNN and 
Transformer Models 

 

C. Transformer Architectures in Spatiotemporal Learning 

Initially designed for machine translation applications, the 
Transformer architecture has transformed sequence modelling 
by introducing self-attention mechanisms that detach from 
recurrence relations to model long-range dependencies. This 
architecture has more recently been applied to spatiotemporal 
tasks such as video recognition, trajectory prediction, and 
multivariate time-series forecasting [16]. Transformers function 
by calculating attention scores for each token against every other 
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token in the input sequence, allowing the model to hone in on 
important parts of the sequence, no matter how far apart they 
are. 

For industrial monitoring tasks, the application of 
transformer models poses some important problems. First, like 
most transformer models, they assume that the input sequences 
are fully observed, which is not the case for many industrial 
applications due to data sparsity and missing data [17]. Second, 
they do not contain topological priors, meaning each input is 
treated independently unless structure is embedded by hand. In 
recent studies, spatial transformers where positional encodings 
are adjusted to represent the location of the sensor and the 
attention masks are limited to adjacency matrices or distance 
maps have been proposed to better the modelling of industrial 
events with transformers [18]. 

Most transformer models function using grid or tabular data 
as input—overlooking the intricate relationships present in 
industrial sensor networks. This has led to the development of 
models that combine the graph inductive bias of GNNs with the 
sequence modelling capabilities of transformers, such as our 
model TGTN. By performing attention on both nodes and time 
steps, the TGTN architecture attempts to achieve a balance 
between structure-aware learning and modelling long-range 
temporal dependencies. 

 

D. Identified Research Gaps in Temporal Graph Learning for 
Industry 

Progress in graph-based and attention-based learning is 
significant, yet there are still gaps to address when using these 

methods for industrial event prediction. The first concern is the 
lack of focus on implementing GNNs and TGNs within real-
world, noisy, sparse, and time-critical industrial settings, as most 
previous work relies on social networks, citation graphs, or even 
synthetic data. Moreover, there is a lack of literature on 
implementing edge computing constraints in real-time, such as 
low latency, and providing robustness against sensor faults and 
drift. 

Second, attention mechanisms for industrial applications 
should be interpretable. Unlike in Natural Language Processing 
(NLP) where attention weights provide a context for words, in 
industrial systems, they must account for some physical or 
causal relationship between the sensors and the events. Most 
current architectures seem not to provide such interpretability, 
particularly in dynamic graphs. 

Third, while graph transformers have been developed, they 
often come with heavy preprocessing requirements and are 
computationally expensive. These wield resources unfavourably 
in low-resourced edge devices that are ubiquitous in industrial 
settings. Our work fills these gaps by presenting a lightweight, 
real-time predictive, temporal graph attention architecture that 
is interpretable and can be deployed in constrained 
environments. 

In order to provide more context regarding the existing 
methods, we include Table 2, which summarizes the baseline 
models used for event sequence prediction. The table captures 
the model's architectural type, temporal modelling abilities, 
topological awareness incorporation, as well as the model's best 
known application. 

 

Table 2: Comparative Summary of Baseline Models and Their Core Mechanisms 

Model Architecture Type Temporal Modelling Topology Awareness Best Use Case 

RNN Recurrent Short-term None Linear Sequences 

LSTM Recurrent Short/Long-term None Sensor Series 

GAT Graph Attention Static Time Yes (Static) Relational Graphs 

TGN Temporal Graph Temporal Edges Yes (Dynamic) Event Streams 

Transformer Self-Attention Long-term None Language, Global Attention 

Proposed TGTN Temporal Graph + Transformer Multi-scale Temporal Yes (Temporal Graph) Industrial Events 

 

Moreover, Figure 2 also details the distribution of event 
anomalies in five legacy industrial datasets. A total 120 
mechanical anomalies were recorded, 90 pertained to power, 85 
were thermal, 70 were network, and 50 pertained to sensor drift. 
This distribution highlights the need for generalizing high-
precision architectures that predict sequences across different 
failure modes and sensors in a multi-sensor scenario. 

 

 

Figure 2: Frequency of Event Anomalies in Legacy Industrial 
Datasets 

 

These results underline the importance of the models 
incorporating attention mechanism that are hybrid temporal-
graph and take into account different constraints put forth by 
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industry. In the following section, we describe the architecture 
of the proposed Temporal Graph Transformer Network 
(TGTN) with respect to it's graph building approach, 
embedding, and multi-head attention for temporal event 
modelling. 

  

III. PROPOSED FRAMEWORK 

A. Graph Construction from Multivariate Event Sequences 

The TGTN framework’s starting point or building block is 
the conversion of an industrial event sequence into a temporal 
graph. Unlike sequence models that attempt to represent events 
in a chronological order, industrial processes are 
interdependent, concurrent, and oftentimes asynchronous. 
Therefore, TGTN creates a graph Gt = (Vt, Et) for each time 
step t. At every time t, nodes Vt represents sensor devices or 
elements being monitored, whereas edges Et captures their 
interactions whether temporal or physical. Edges can mean co-
activation in a particular time window, direct physical links, or 
shared patterns over time. 

To build these graphs, a dynamic sliding window is applied 
on the multivariate event stream. In the case of each window, a 
snapshot graph is built where events are represented as node 
features along with timestamps, and relationships are 
constructed using certain cross-correlation criteria, time delay 
estimation, or domain specific adjacency matrices. The graph 
changes from one time window to another, and in this process, 
it captures the state of the system as well as its historical change. 

As a single graph dataset is treated as a dynamic collection 
of graphs instead of a sequence of time-series vectors, it can 
more easily be analysed for temporal reasoning, structural 
learning, and feature contextual fusion. Additionally, this 
approach is tolerant to missing information and asynchronous 
data arrival, as the learning of node embeddings is not 
dependent on the order of the data, but rather on the 
relationship. 

 

B. Temporal Attention and Positional Encoding Strategy 

The key modelling capability of TGTN is attributed to the 
addition of temporal attention with transformer blocks designed 
for dynamic graph structures. Unlike RNNs where sequences 
are processed in a serial fashion, transformer designs permit full 
pairwise attention across time steps which allows for long-range 
dependencies to be captured without suffering from gradient 
flow issues. In TGTN, this form of attention is adapted to time-
aware frameworks by adding temporal attention scores between 
nodes based on their historical embeddings, position encodings, 
and event timestamps. 

To distinguish between events that happen at different times, 
encodings in the form of positional masks are added into the 
representation of the nodes. These encodings are also of 
sinusoidal form like in the standard transformer models, but for 
irregular and non-uniform sampling rates that are frequent in 
industrial data. Other features of the edges such as time gaps, 
activation intervals, or weights from other sensors are also 
encoded and fused into the attention computation pipeline, 
which enables the model to capture dependencies both in 
absolute and relative terms with respect to time. 

With each epoch the model goes through, focus calibration 
leads to more consistent precision estimates, demonstrating that 
the model is optimizing focus on relevant time intervals and 
interactions between nodes. Figure 3 represents this 
convergence tendency, where mean attention weights through 
the network rise steadily with additional training, demonstrating 

the network’s increased trust on attention distribution 
throughout the network. 

 

 

Figure 3: Attention Weight Convergence Over Training 
Epochs 

 

C. Node, Edge, and Time-Aware Embedding Layers 

As the encoder part of TGTN begins with a node embedding 
layer, it starts projecting multivariate sensor inputs into a 
common latent space using a shared embedding matrix. This 
input is enhanced through previously described temporal 
positional encodings, which are fed into a temporal graph 
attention block. Each node’s input feature vector contains an 
array of features that includes the current sensor reading, 
historical trend, event type encoding, and auxiliary metadata 
such as location or priority level. 

The graph that is constructed is dynamic in nature. It contains 
features of its own like delay times, causality strength, and co-
occurrence frequency. These edge features are processed with 
an edge integrator module that converts them into latent vectors 
and modulates the message-passing process between nodes. 
This form of conditioning an edge enables asymmetric influence 
modelling wherein a fault generated at Node A can, for instance, 
strongly propagate to Node B but not be strongly received in the 
opposite direction. 

Henceforth, self attention and cross node attention are 
harnessed to update node embedding over their own temporal 
states and neighbours in their graph. To showcase how temporal 
dependencies shift across nodes, Figure 4 is a cross node 
temporal dependency matrix. This cross- temporal relationship 
heatmap demonstrates some of the strongest dependencies in the 
model between A to B, and C to D node pairs, showcasing the 
potential of the model to capture traces of interactions in the 
temporal graph. 

 

 

Figure 4: Cross-Node Temporal Dependency Matrix 
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To fit these layers for deep learning in industrial setups with 
hundreds of mounted sensors, they are designed with sparse 
computations and modular blocks to ensure scalability of the 
model as well as reasonable computational costs. 

 

D. Sequence Learning via Cross-Time Transformer Blocks 

The last layer of TGTN architecture is sequence learning 
where the model is constructed from a stack of transformer 
blocks which include one multi-head attention layer and a 
position-wise feedforward network. This transformer is applied 
over time steps of graph snapshots, enabling tracking change of 
system states by combining node embeddings over spatial and 
temporal domains. The model can disentangle overlapping 
sources and recurring failures due to the multi-head attention 

where different heads attend to different temporal patterns or 
node types. Each output of the multi-head attention is 
aggregated, normalized, and passed through a stack of 
transformer encoders to model high-order dependencies and 
generate contextualized embeddings for each node at a given 
time step. 

The embeddings are passed through an output decoder to 
generate predictions for future events, anomaly scores, or class 
labels dictated by the task. The entire architecture is trained end-
to-end with a lossy classifier using cross-entropy for 
classification and mean-squared error for temporal forecasting. 

The architectural components of TGTN and their respective 
input-output dimensions are summarized in Table 3. This 
modular design fosters the clear separation of concerns that 
facilitates embedding, attention, convolution, and prediction, 
thus enhancing interpretability and maintainability. 

 

Table 3: Architectural Components and Dimensional Specifications of TGTN 

Component Input Dimension Output Dimension 

Input Embedding Layer Batch × Time × Features Batch × Time × Dim 

Temporal Positional Encoder Batch × Time × Dim Batch × Time × Dim 

Edge Feature Integrator Batch × Nodes × Edge_Features Batch × Nodes × Dim 

Multi-Head Attention Block Batch × Heads × Nodes × Dim Batch × Nodes × Dim 

Graph Convolution Unit Batch × Nodes × Dim Batch × Nodes × Dim 

Feedforward Transformer Layer Batch × Nodes × Dim Batch × Nodes × Dim 

Output Prediction Layer Batch × Time × Classes Batch × Time × Classes 

 

The innovative monolithic structure developed by integrating 
transformer-based reasoning with temporal graph systems 
enables robust, expressive, and highly generalizable models 
that capture intricate and global dynamics of industrial systems, 
improving traditional frameworks. These systems aim at event 
prediction in monitoring systems, which places TGTN as a 
market leader in next-gen event prediction. 

  

IV. EXPERIMENTAL SETUP AND DATASET OVERVIEW 

A. Industrial Use Case Description and Sensor Topology 

To test the efficacy of the Transformer-Based Temporal 
Graph Neural Network (TGTN), a realistic industrial 
monitoring setting was simulated using sensor streams from an 
operational-grade IIoT system. This system was deployed in 
parallel across a large-scale petrochemical facility and had a set 
of distributed sensors capable of capturing real-time signals 
from rotary machinery, pipelines, electrical panels, and 
supervisory control units. These sensors produced time-
stamped events which corresponded to status transitions, fault 
states, or threshold crossings, illustrating extremely nonlinear 
and asynchronous behaviour. 

The sensor configuration contained 47 sensor nodes allocated 
across five functional zones, forming the system’s topology. 
Each node was assigned a mechanical, thermal, pressure, 
electrical, and communication layer. The sensor arrangement 
was hierarchical-mesh interleaved which permitted both 
redundancy and lateral data propagation. This topology 
permitted the observation of localized anomalies, such as motor 
temperature spikes, as well as system events like power surges 
which could lead to cascading failures. The reason this system 
justified using a temporal graph representation is due to its 

intricate interconnectivity and topology, which maintained 
spatial relations alongside time-dependent movements. 

The sensors provided logs at a basic sampling frequency of 1 
Hz, while additional high-frequency sampling was performed 
during critical transitions through an event-logging mechanism. 
This provided a dataset containing both continuous sensor data 
and discrete state changes, which served as input for the 
construction of dynamic temporal graphs throughout the entire 
monitoring duration. 

  

B. Dataset Details and Preprocessing Pipeline 

The dataset had a comprehensive duration of 180 days, 
resulting in over 120,000 discrete event entries. In Table 4, the 
dataset captured five key event types such as mechanical faults, 
temperature increases, pressure decrease, power variances, and 
communication outages. A unique encoding was used for each 
of these event types along with a certain set of sensor nodes 
based on the failure propagation topology to define the 
encoding’s boundaries. 

 

Table 4: Dataset Summary – Duration, Sampling Rate, Event 
Types, Node Count, Edges 

Attribute Value 

Total Duration 180 days 

Average Sampling Rate 1 Hz 

Total Number of Events 120,000 

Number of Unique Event Types 5 
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Number of Sensor Nodes 47 

Average Node Degree 3.2 

Temporal Edge Density 0.68 

 

For model generalization and data consistency, a set of data 
preprocessing steps was taken. First, to ensure continuity across 
graph snapshots, time-window segmentation with overlap was 
used to temporally align all sensor streams. Then, for the 
differences due to sensor calibration, feature normalization was 
performed. Temporal smoothing was conducted on a selective 
basis for high-variance sensors using a rolling median filter, and 
one-hot vectors of categorical events were fused into node 
attributes and encoded into the nodes' features. 

As a result of missing values from sensor downtimes or gaps 
in transmission, values were interpolated using temporal 
neighbour reconstruction within the same graph window. For 
causality purposes, no look-ahead interpolations were done. 
Instead, edge inference algorithms made use of historical co-
activation patterns of nodes to impute values based on most 
likely neighbour states. Important outliers from extreme value 
anomalies such as power outages or pressure failures were 
preserved using noise-robust encoding techniques. 

The distribution of event types in the dataset is shown in 
Figure 5. Mechanical faults accounted for 30% of total events, 
followed by temperature spikes at 25%, pressure drops at 20%, 
power fluctuations at 15%, and communication failures at 10%. 
This tells us that the system is at a high risk of mechanical 
damage and thermal degradation, which is typical of rotary 
compressors, and high-speed, and rotary equipment. 

 

 

Figure 5: Event Type Distribution in the Industrial Dataset 

 

The changes in the time increments of sensor activations 
were also analysed for the purpose of identifying the demand 
cycle and operational cycles. Figure 6 depicts sensor activation 
for each of the six hours within a 24-hour day. The highest 
activation of sensors took place between 08-16h when there was 
maximum operational load with shift changes and mid-day. The 
still inactive period from 00-04h the system is said to be 
dormant or on standby, but critical systems were still active in 
safety monitoring. 

 

 

Figure 6: Sensor Activation Frequency Across Time 

 

The final dataset that required the construction and 
incorporated for the training and evaluation was composed of 
dynamic graphs set at the temporal resolution of 5 seconds and 
window size of 60 seconds. The snapshots were time-shifted 
graphs in which the nodes were declared as sensor states where 
edges were cross sensor dependencies derived from co-
activation bounded within a window or physical closeness due 
to neighbouring. 

  

C. Evaluation Metrics and Hyperparameter Configurations 

The experimental validation of TGTN architecture, which 
was designed in this work, was executed using multiple 
competing factors such as precision, multi-class event prediction 
robustness, and real-time validity. The primary metric was 
accumulative sequence accuracy, which measures how many 
events in the future a model predicts accurately, in a rolling 
window manner. Supplementary metrics were also taken into 
account, including Precision, Recall, F1 Score, AUC, and all 
multi-class event prediction related metrics. 

For time-critical activities including forecasting failure and 
sending proactive maintenance alerts, MTP (Mean Time-To-
Predict) was introduced as a custom-defined metric. MTP 
analyses if the model is able to make a prediction before the fault 
happens, relative to when the fault is scheduled to happen and 
how critical it is. Also, latency and throughput were measured 
at the node and batch levels to evaluate the feasibility of model 
deployment on edge devices with restricted resources. 

A total of 30 iterations were completed for the Bayesian 
optimization of hyperparameters. The optimal configuration 
utilized four attention heads, three layers of graph transformers, 
a hidden dimension size of 128, and an Adam optimizer with a 
learning rate of 1e-4. To augment generalization, a dropout rate 
of 0.2 was set on attention and feedforward layers. Training was 
performed for 100 epochs on graph sequence data with a batch 
size of 32. 

Edges of the graph were constructed dynamically in the 
training phase with an adjacency prediction module, and edge 
features included time delay, historical frequency, and feature 
similarity. For temporal encoding, sinusoidal position 
embeddings were concatenated with node feature embeddings 
which allowed the model to attend to the proximity of the signal 
in time as well as its importance. 

  

D. Baseline Models for Comparative Assessment 

In order to assess TGTN's performance, we developed five 
baseline models that capture the fundamental components of 
models used in event prediction. These include:  
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(1) An LSTM model that was trained on a sequence of 
sensors 

(2) A GAT model that operates on static graphs formed from 
sensor adjacency and works on static graphs 

(3) A transformer encoder model trained on time-series data 
turned into a series 

(4) A temporal graph network (TGN) with memory, edges 
that depend on time, and time-dependent edges, coupled with 
memory modules  

(5) A hybrid model that makes use of both LSTM and GNN 
with structure and sequence modelling. 

As with TGTN, all other models were tested using the same 
preprocessing pipeline and train-validation split. All models 
were evaluated under a unified hardware-software environment 
to ensure that no baseline was favoured over other comparators. 
The results, which will be explored in Section 5, indicate that 
while static models are able to perform adequately within fixed 
scenarios or short- to mid-range prediction windows, they do 
not seem to extrapolate to longer ranges, varying system 
behavior, dynamic ranges, edge constraints, and application-
deployment-centric systems. 

TGTN outperformed the rest across the board in terms of 
accuracy, displayed the best failure robustness, and provided 
strong explainability through attention weight mapping. The 
advantages stem from TGTN's spatial structure and multi-head 
attention mechanisms, enabling it to model temporal evolution 
and capture the hidden dependencies found in real-world 
monitoring data. 

  

V. RESULTS AND PERFORMANCE ANALYSIS 

A. Prediction Accuracy and Sequence Recall Comparison 

In assessment of the efficiency of TGTN architecture, we 
conducted an elaborate evaluation across all model 
configurations and model prediction timelines. The accuracy of 
multi-step event sequence prediction was taken as the foremost 
measure. As stated previously in Figure 7, TGTN was superior 
to all baseline models in every measure of sequence length 
increase. While older models such as LSTM and GAT 
encountered limitations at around 15 time steps, TGTN was 
able to maintain high prediction accuracy because of its high 
longitudinal temporal dependence and inter-node relationship 
modelling capabilities. The model started from 78.4% at 
sequence 5 and showed strong extrapolation capabilities at 
higher lengths while improving to 89.5% by 30 sequence steps. 

It can be seen that models using purely sequence based 
elements are capped and show diminishing returns towards 
positive prediction because of the lack of structural 
understanding. On the other end of the scale TGN and GAT 
models showed some degree of improvement over the use of 
RNNs, employing node adjacency, but lacked the necessary 
temporal resolution for long-sequence inference. The 
application of hybrid attention allows TGTN to overcome this 
challenge by adaptively adjusting the time-step or node 
influence weights applied in event forecasting. 

 

 

Figure 7: Prediction Accuracy vs Sequence Length 

 

B. Latency and Throughput Across Model Variants 

While maintaining a focus on accuracy, the benchmark edges 
towards real-time applicability in industrial settings. We 
evaluated the inference latency across different models using 
edge hardware. As shown in Figure 8, TGTN stood out with the 
least average latency of 20 ms, outperforming the Transformer 
at 28 ms, LSTM at 25 ms, and graph-centric models like TGN 
at 35 ms. This advantage in latency performance stems from 
TGTN's sparse attention mechanism and parallelized 
transformer blocks that outperform in processing high-
dimensional graph sequences due to lack of recurrent delays. 

The outcome is even more striking considering the common 
understanding that graph-based models are heavily 
parallelizable and thus, are perceived as computationally 
intensive. TGTN's edge-optimized architecture, complete with 
lightweight node embeddings and limited temporal attention 
windows, drives these models towards faster-than-real-time 
operational controls. When damage mitigation protocols need to 
activated in milliseconds, such efficiency ceases being a 
convenience and directly translates into meeting operational 
thresholds. 

 

 

Figure 8: Model-Wise Inference Latency Across Devices 

 

In addition to latency, TGTN and TGN throughput was 
calculated by assessing how quickly large batches of graph 
sequences could be processed. As shown in TGTN, it achieved 
greater throughput compared to TGN by 2.1x due to lower 
memory overhead and better scalability with the sequence 
length. This facilitates its use in smart factories or autonomous 
process facilities where there is a need for simultaneous 
prediction across hundreds of sensor clusters. 
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C. Ablation Study: Impact of Temporal and Topological 
Features 

To evaluate the impact of some architectural features, an 
ablation study was conducted. It was observed that when the 
temporal attention mechanism is removed entirely, there is a 6.7 
percent drop in sequence level accuracy, suggesting the 
importance of dynamic temporal encoding. The performance 
also declined by 9.2 when event correlations across nodes are 
removed which validates that graph construction is necessary to 
fulfil accurate forecasting under the use of flat input sequences. 

When both of the components were removed, the model 
collapsed into a standard transformer and performed 
comparably to the baseline models. This underscores the 
synergistic value of temporal and topological reasoning. 
Furthermore, we investigated the model's sensitivity to edge 
sparsity by random pruning 25% of inferred connections. The 
model did perform slightly worse, but it remained robust in that 
it was able to recover context from neighbouring nodes. This 
particular aspect of performance is important when considering 
noisy conditions or in partially observable systems. 

 

D. Robustness under Noise and Sensor Failures 

Noise in data, hardware faults, and packet losses are 
commonplace in real-world industrial systems. To assess model 
robustness, we devised several corruption scenarios, such as 
node removal, logging events out of order, or timestamp 
distortion. The TGTN model showed graceful degradation with 
a sustained drop of less than 4% prediction accuracy under 15% 
node dropout, and recovers quickly in the re-synchronization 
windows. In contrast, TGTN’s competitors LSTM and 
Transformer models experienced 10–12% drops under similar 
conditions because they had no means for topological 
correction, tapering off slowly as they ran out of resources. 

To explore classification robustness in greater detail, we 
scrutinized the model’s output with a confusion matrix, as 
illustrated in Figure 9. The TGTN maintained high precision for 
all five event classes, with the greatest accuracy for classifying 
mechanical and thermal events. Some minor confusion was 
noted with pressure and power-related sequences due to 
overlapping signal profiles during multi-system interaction. 
Notwithstanding, the model correctly captured communication 
anomalies and rare event classes that simpler models often 
misclassify due to low occurrence frequency and weak labeling 
patterns. 

 

 

Figure 9: Confusion Matrix for Predicted Event Sequences 

 

In summary, the attention mechanisms of the model 

contributed to performance but even more so to interpretability. 
Attention heatmaps enabled domain specialists to follow the 
decisions of the heat maps directly—sensors and time intervals 
that strongly impacted the outcome—thereby enhancing the 
usefulness of the model as a decision-support system for field 
engineers and operations managers. 

  

VI. DISCUSSION AND PRACTICAL IMPLICATIONS 

A. Real-Time Integration with SCADA and Industrial Control 
Systems 

As part of the implementation steps taken toward a complete 
system design, the seamless incorporation of the Temporal 
Graph Transformer Network (TGTN) with existing Supervisory 
Control And Data Acquisition (SCADA) and Distributed 
Control Systems (DCS) was considered. These frameworks are 
foundational to industrial process monitoring systems, and as 
such, require models that are precise, temporally constrained, 
and frugal with available resources. Unlike analytics driven by 
cloud infrastructure using datasets generated after an event, 
TGTN was designed with the entire edge-to-core continuum in 
consideration. It is designed such that real-time inferences can 
be made at the sensor edge, local controller units, or central 
SCADA servers depending on the latency, bandwidth, and 
criticality requirements of a given deployment. 

The graph construction module of TGTN is capable of 
ingesting telemetry streams with live data and generating graph 
snapshots within a set duration. As with the case of transformer- 
based attention models, TGTN can support online predictions 
without requiring stateful session management because 
inferentially the attention layers are stateless and highly 
parallelizable. Such stateful session management is often 
impractical in low-memory industrial field units. In addition, the 
modularity of the architecture renders it compliant with OPC 
UA and MQTT, which are two popular SCADA protocols for 
data communication. With this edge intelligence, operators can 
receive real-time alerts regarding not only predicted failures but 
also the nodes and sensors that triggered the early warning 
signals. 

Subsequently, such capability of integration can enhance the 
value proposition significantly for industrial practitioners. It 
gives the opportunity to embed predictive maintenance routines 
in existing HMI dashboards instead of relying on alarm systems 
that react after a breach happens. As demonstrated in Section 5, 
the system's low latency guarantees its usability in closed 
feedback loops where anticipating faults must quickly trigger 
actions such as shutting off an emergency valve or thermal 
overload termination. 

 

B. Interpretability of Attention Patterns in Failure 
Forecasting 

The adoption of industrial AI applications still faces notable 
challenges in the interpretability dimension. Specialists often 
express a lack of confidence in black box systems capable of 
complex processing but not offering useful explanatory outputs. 
In this sense, the TGTN architecture gives great benefits with its 
attention mechanism that automatically extracts the most 
important nodes and time slices toward a specific prediction. 

Inter-class event attention weight distribution to different 
levels was fairly uniform within classes. Consistent focused 
attention in the pre-failure phase drew attention from thermal 
and vibration node adjacent tiers for deeper closer to basal 
levels. Mechanical faults, for example, showed alarming 
disposition in the pre failure phase when weak signals were 



Journal of Intelligent Systems with Applications 2024; 7(1): 35-45 44 
 

steady. In the case of Communication faults, focus was directed 
toward the point of failure as well as the interval leading up to 
it, relying on the identified baseline packet delivery network 
experiences delay or loss. 

This phenomenon was quantitatively reflected in Figure 10 
which depicts model attention distribution across event classes. 
Mechanical events commanded the greatest proportional share 
of model attention at 28%, with thermal and pressure-related 
events following at 25% and 20% respectively. Though 
infrequently occurring, power and communication faults 
received a comparable focus of attention. This distinction 
further cements the model’s skill at dynamically allocating 
interpretive weight according to contextual relevance as 
opposed to mere frequency. 

 

 

Figure 10: Distribution of Attention Focus Across Event 
Classes 

 

Field engineers validated the insights obtained through 
attention maps, stating that the highlighted nodes and sequences 
in the thermodynamic attention system often corresponded to 
their intuition or historical root cause records. Such 
convergence of interpretations increases reliability, enhances 
operator trust, consolidates validation processes, and 
dramatically decreases mean time to repair (MTTR) for critical 
failures. 

 

C. Comparison with Rule-Based and RNN-Based Approaches 

The simplicity and transparency of rule-based systems has 
resulted in their adoption across industries for monitoring 
purposes. However, they are brittle when it comes to system 
evolution, struggling with coping framework metamorphoses, 
sensor degradation, and new fault categories. In contrast, TGTN 
learns structural and temporal dependencies without rules 
through a graph-based model that captures underlying 
dependencies and pathways for signal propagation that more 
traditional systems would require considerable engineering to 
construct. 

TGTN also surpasses RNN-based models in accuracy, as 
discussed in Section 5, and is more resilient to noise and 
structural generalization. RNNs depend too much on temporal 
continuity and asynchronous signals, intervals or absent periods 
tend to present a problem. Initialization will also need to be 
done cautiously since it’s relatively easy to get trapped in the 
vanishing gradient problem in long sequences. With TGTN, 
these challenges are alleviated thanks to attention being non-
sequential, allowing greater control over what to remember and 
for what durations across intervals of time. 

Additionally, the RNN and rule based models tend to struggle 
in multi-modal and multi-node settings that feature intricate 
dependencies between various systems. For instance, a pressure 
anomaly which may result in a mechanical fault at some point 
can have its early signs in the electrical sub-systems. Only with 
temporal reasoning combined with topological reasoning the 
pattern can be recognized. TGTN stands out in regards to such 
patterns that are unreachable with linear or siloed approaches 
because it can identify such patterns and take action towards 
them. 

 

D. Limitations and Optimization Opportunities in Temporal 
Graphs 

Although there is good overall performance from the TGTN 
framework on accuracy, latency, prediction, and interpretability, 
there remain several limitations and possibilities to optimize. 
Firstly, the construction of the graph still is slow in relation to 
time, especially in areas of dynamic sensor configurations or 
changing topologies. The implementation of efficient sliding 
windows along with on-the-fly edge inference mechanisms 
certainly helps, but further optimization with graph sampling 
methods or edge pruning could reduce the overhead on memory 
and increase speed. 

Also, the performance of the model is highly dependent on 
the event timestamping and alignment of the graph’s temporal 
components. When sampling is inconsistent or jittered greatly, 
attention scores tend to get noisy. Implementing modules or 
mechanisms that are confident in the attention such as attention-
based signal and time-warping invariance could help increase 
stability against those inconsistencies. 

Third, TGTN allows for real-time inference, but it currently 
works with the assumption that a set of temporal windows to be 
processed by a transformers block will be made available. In 
applications requiring extreme reductions in latency, micro 
attending or streaming transformer architectures could enable 
true step-wise inference by alleviating buffering requirements. 
This would be beneficial in control loop applications that require 
feedback to be provided within sub-second intervals. 

Lastly, deployment in federated or multi-plant contexts 
remains a challenge. Although TGTN has the ability to 
generalize across configurations, its efficiency diminishes with 
greater differences in system architecture. Future works aims to 
address this with adaptive graph transformation layers that 
encode plant-specific structures transformable to a unified core 
predictive framework. Moreover, the ability to constantly learn 
from incoming data through self-supervised learning objectives 
would enhance the system’s robustness against concept drift. 

  

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

A. Summary of Contributions and Key Results 

This study proposes a new framework called the Transformer-
Based Temporal Graph Neural Network (TGTN), which enables 
sequence of event prediction in sophisticated industrial 
monitoring systems. TGTN assimilates both graph-structured 
reasoning and temporal attention to represent the sensor data in 
industrial settings as dynamic, asynchronous, and multi-modal. 
TGTN has outperformed traditional approaches, including 
RNN-based models and rule-based models, which are bound by 
structural complexity and long-term dependency issues, in the 
accuracy, latency, and robustness metrics across various 
industrial case studies. 

The construction of the model features a new pipeline for 
dynamic graph construction, multi-head attention at the node 
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level and time dependence, and attention maps that can be used 
for root cause investigation, enhancing the interpretability of 
the attention mechanism. A practical value of the model is 
shown through extensive experimental validation with real 
sensor data, where TGTN showed consistent accuracy across 
varying sequence lengths and outperformed baseline models 
significantly. Also, the model achieved low inference latencies, 
proving suitability for real-time industrial scenarios where 
immediate response is critical. 

Besides, the research explains how TGTN aids in improving 
forecasting explainability, which is critical in mission-critical 
domains. Attention heatmaps produced during inference 
matched known fault propagation paths, aiding trust, 
intervention, and operational optimization by the engineers and 
operators. 

 

B. Deployment Considerations in Industrial Environments 

To aid in practical deployment, TGTN was designed to 
function effortlessly within the industrial ecosystem SCADA 
and industrial edge computing devices. Its stateless inference 
mode with a sparse attention mechanism and low graph 
processing modules allow it to operate under severe hardware 
constraints while retaining high predictive capabilities. These 
features enable efficient operations on constrained hardware. 
Moreover, the modular architecture ensures adaption to 
different sensor network topologies and business workflows 
specific to the region. 

Models designed for practical deployment scenarios tend to 
focus on accuracy. However, these models also need to feature 
adaptability, maintainability, and auditability. By providing 
domain adaptation through transfer learning and utilizing 
industrial communicating protocols such as OPC UA and 
MQTT, TGTN addresses these challenges by providing the 
needed translatable evidence. 

However, ensuring successful deployments in production use 
cases incorporates more considerations than model 
performance. These are things such as graph alignment over 
distributed shards, invariants under load pertaining to latency, 
and management of model lifecycles. To mitigate these issues, 
future iterations of TGTN will include monitoring components 
for drift, automated retraining trigger modules, and API 
endpoints for quality audits that ensure continuous maintenance 
of signal validity and prediction control. 

 

C. Future Extensions: Online Learning and Federated 
Temporal GNNs 

This version of TGTN has been analysed in a batch-learning 
scenario with the use of periodically refreshed temporal graphs. 
This architecture serves well within the realms of predictive 
maintenance and proactive alerting. However, there are various 
proposed directions for subsequent work aimed towards 
increasing adaptability and scalability of the model. 

One promising approach is online learning for adaptation to 
streams of data incoming continuously. In rotating machines or 
even during the running state of HVAC systems and energy 
grids, the associated signals undergo metamorphosis during 
aging, load shifting, or over the course of an upgrade. TGTN 
would benefit greatly from the incorporation of online learning 
modules that would enable continual adjustment of embeddings 
and attention parameters over time, preserving accuracy 
without sustained period of full retraining. Current research in 
this area focuses on memory-efficient replay buffers, low-rank 
adaptation, and meta-learning. 

Another future direction is federated learning over temporal 
graphs. Industrial networks commonly consist of multiple 
plants, or facilities, or production units which often have distinct 
topologies and privacy constraints. A federated TGTN 
framework woulsd enable local nodes to perform training of 
graph and attention models on their data and only periodically 
send encrypted gradients or sub-graph embeddings to an 
orchestrator. This maintained data privacy, minimized 
communication costs, and enabled intelligence sharing across 
data silos or enterprises. Such a federated approach is also 
compliant with evolving frameworks associated with Industry 
4.0 and edge-to-cloud orchestration. 

Finally, future work will focus on integrating uncertainty 
quantification within the attention components to be developed. 
By constraining the bounds of the predicted output on attention 
scores as well as on the prediction itself, the system is able to 
signal operators not simply about a forecast, but about how 
certain the model is, thus supporting more precise risk-informed 
decision-making in high-urgency industrial environments. 
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