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Abstract—Parkinson’s disease (PD) is a progressive neurode-
generative disorder that impairs motor functions and disrupts
functional brain connectivity. Electroencephalography (EEG),
with its high temporal resolution, enables investigation of these
disruptions in resting-state brain activity. This study aims to
differentiate PD patients from healthy controls by analyzing beta-
band (12-35 Hz) EEG connectivity through two widely used syn-
chronization metrics: Phase Locking Value (PLV) and magnitude-
squared coherence. We utilized an open-access EEG dataset from
the University of Iowa, comprising 13 individuals with PD and
13 age-matched healthy controls, recorded during eyes- open
resting state. EEG signals were filtered in the beta band, and both
PLYV and coherence metrics were calculated across 63 channels.
Connectivity heatmaps were generated for whole-brain

and motor-related regions (F3, C3, Cz, C4, F4, FC3, FC4). While
PD subjects showed increased phase synchronization (PLV), they

demonstrated reduced coherence values compared to controls,
suggesting abnormal hypersynchrony alongside decreased linear
coupling. Statistical comparisons using independent t-tests re-
vealed significant differences in specific connections (e.g., Cz—F4,
F3-C3), particularly within motor areas. These features were used
to train six supervised machine learning classifiers including Fine
Tree, LDA, Linear SVM, Fine KNN, Naive bayes and neural
network. Fine Tree model achieved promising classification
accuracy of 84.7%, highlighting the potential of EEG-based
features in aiding early diagnosis of Parkinson’s disease.

In conclusion, our findings demonstrate that PLV and coher-
ence in the beta band, especially in motor-related networks, can
serve as meaningful biomarkers. Combined with machine learn-
ing, this approach offers a non-invasive tool for distinguishing PD
from healthy controls

Keywords—Parkinson’s disease; EEG; PLV; coherence; machine
learning

Ozetce—Parkinson hastalig”t (PH), motor fonksiyonlar1 bozan
ve beynin is,levsel bag lantiihigim etkileyen ilerleyici bir nérode-

jeneratif bozukluktur. Yiiksek zamansal ¢6ziiniirliig”e sahip elek-
troensefalografi (EEG), dinlenim halindeki beyin aktivitesinde bu
bozulmalarin aras tirilmasina olanak tanmir. Bu ¢alis, ma, beta bant
(12-35 Hz) EEG bag’lantiilig'im iki yaygin senkronizasyon olciitii
olan Phase Locking Value (PLV) ve kareli biiyiikliik tutarhhg™
(magnitude-squared coherence) kullanarak Parkinson hastalari ile
sag likh bireyleri ayirt etmeyi amaclamaktadir. Calis,- mada, lowa
Universitesi’nden temin edilen agik eris,imli bir EEG veri seti
kullanilmis, tir. Veri seti, gozler agik dinlenim halinde kaydedilen
13 Parkinson hastasi ve yas ca es les, tirilmis, 13 sag'likli bireyden
olus maktadir. EEG sinyalleri beta bandinda filtrelenmis, ve PLV
ile coherence olciitleri 63 kanal iizerinden hesaplanmuis, tir. Tiim
beyin ve motorla ilis kili bolgeler (F3, C3, Cz, C4, F4, FC3, FC4)
icin bag’lanti haritalar1 olus turulmus -

tur. Parkinson hastalari, sag'likh bireylere kiyasla artms, faz
senkronizasyonu (PLV) sergilemis, ancak coherence deg erleri

daha diis, iik bulunmus, tur. Bu durum, azalmis, lineer bag lanma
ile birlikte anormal hipersenroniyi is aret etmektedir. Bag imsiz t-
testi ile yapilan istatistiksel kars ilas tirmalar, o6zellikle motor
bolgelerdeki belirli bag’lantilarda (6rn. Cz—F4, F3—C3) anlamh
farkhliklar ortaya koymus tur. Elde edilen 6zellikler, Fine Tree,
LDA, Linear SVM, Fine KNN, Naive Bayes ve yapay sinir ag’1
olmak iizere alti denetimli makine 6g renmesi siniflandiricisinda
kullamlmus tir. Fine Tree modeli %84,7 dog ruluk oram ile umut
verici bir simflandirma performansi gostermis, tir. Sonug olarak,
beta bandinda o6zellikle motorla ilis kili ag'larda PLV ve coher-
ence Olciimleri anlaml biyobelirtecler olarak deg”erlendirilebilir.
Makine 6g renmesi ile birles, tirildig"inde bu yaklas 1m, Parkinson
hastalig'inin sag”likhh bireylerden ayriminda invazif olmayan bir
arac olarak potansiyel tas imaktadir.

Anahtar Kelimeler—Parkinson hastaligi; EEG; PLV; koherans;
makine 6g renmesi
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I.  INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenera-
tive disorder affecting motor control and cognitive function,
often disrupting functional connectivity in motor and exec-
utive networks [1], [2]. EEG, a non-invasive technique with
high temporal resolution, enables detection of abnormal brain
dynamics in PD [4]. Beta-band activity (12-35 Hz), linked
to motor processing, is frequently altered in PD, especially
in motor-related cortical areas [1], [5], [24]. Previous studies
report increased phase-locking and decreased coherence in PD,
varying by region and method [4], [6], [18], [27]. This study
analyzed beta-band connectivity in frontal and central regions
(F3, C3, Cz, C4, F4, FC3, FC4) identified in prior literature as
abnormal in PD [1], [2], [4], [24]. We evaluated whether phase-
locking value (PLV) and coherence from these regions could
distinguish PD patients from controls and serve as features for
machine learning models [10], [21].

II.  MATERIALS & METHODS
A. EEG Dataset
This study utilized an open-access EEG dataset originally

published by Anjum et al. [30], developed for the LEAPD
(Linear Predictive Coding EEG Algorithm for Parkinson’s
Disease) study. The full dataset includes recordings from 41
Parkinson’s disease (PD) patients and 41 demographically

matched healthy controls, collected at two institutions: the
University of New Mexico (UNM) and the University of lowa.
For the present analysis, only the Iowa cohort was used, which
consists of 14 PD patients and 14 healthy controls, all recorded
during a resting-state, eyes-open condition. EEG recordings
were acquired using a 64-channel BrainVision system, sampled
at 500 Hz, with a hardware bandpass filter of 0.1-100 Hz. The
online reference electrode was Pz in the lowa dataset. As
this electrode was used as a reference, its data was not available,
resulting in 63 usable EEG channels for all subjects. During
preprocessing, two subjects (PD1681 and Control1411) were
excluded due to technical issues, including incomplete
recordings and high artifact contamination. Thus, the final
dataset comprised 26 participants (13 PD and 13 control). Eye-
blink artifacts were removed using Independent Component
Analysis (ICA). Only the eyes-open condition was analyzed in
this study, as it provides a more stable and informative neural
baseline for resting-state EEG connectivity analysis [13-16,30].

B. Preprocessing
We specifically focused on the beta frequency band (12-35

Hz), as it has been widely associated with motor control and is
known to be affected in Parkinson’s disease [1], [5], [24]. We
applied a bandpass filter to the EEG signals, removing lower
(delta, theta, alpha) and higher (gamma) frequency compo-
nents. This ensured that all subsequent connectivity analyses,
such as PLV and coherence, reflected only beta-band dynamics
[8], [27]. We focused on electrode pairs in the frontal and
central scalp regions, specifically F3, C3, Cz, C4, F4, FC3, and
FC4. These were chosen based on prior studies that identified
significant beta-band connectivity disruptions in motor and

premotor areas in Parkinson’s disease patients. Rather than
limiting the analysis to a single electrode pair, we evaluated
connectivity across multiple pairwise combinations within this
region of interest. The pairs included: F3-C3, F3-Cz, F3-C4,
F3-F4, F3-FC3, F3-FC4, C3—Cz, C3-C4, C3-F4, C3-FC3,
C3-FC4, Cz—C4, Cz-F4, Cz—FC3, Cz—FC4, C4-F4, C4-FC3,
C4-FC4, F4-FC3, F4-FC4, and FC3-FC4. These electrodes
correspond to cortical areas involved in motor initiation, sen-
sorimotor integration, and interhemispheric coordination—all
of which are impacted in PD [4], [6], [18].

C. Connectivity Measures

1) Phase Locking Value (PLV): To assess functional connec-
tivity based on phase synchronization between EEG channels,
we employed the Phase-Locking Value (PLV) metric [7], [8].
PLV quantifies the consistency of phase differences between
two time-series signals over time. The Hilbert transform was
applied to each channel to obtain the instantaneous phase. PLV
was then computed pairwise between all EEG channels
according to the following formula:

N
1 i - n
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where ¢1(n) and ¢2(n) denote the instantaneous phases of
channels i and j, respectively, and N represents the total number
of time points. Equation 1 [7]. and further discussed by Aydore
et n was first introduced by Lachaux et al. al. [8].

PLV values range from 0 (indicating no phase synchroniza-
tion) to 1 (perfect phase locking). Individual PLV matrices were
computed for each subject, separately for the Parkinson’s
Disease (PD) and Control groups, and used in subsequent
statistical and machine learning analyses.

2) Coherence: Magnitude-squared coherence was used to
evaluate functional connectivity in the frequency domain [17],
[28]. Coherence reflects the linear correlation between two
signals at specific frequencies, accounting for both phase and
amplitude relationships. Coherence between each pair of EEG
channels was estimated using Welch’s method, which involves
segmenting the signal, applying windowing, and averaging the
periodograms. The coherence function Cj(f) was defined as:

|Si(f)I?

= 505 )

where Sij(f) denotes the cross-spectral density between chan-
nels 1 and j, and Sii(f), Sjj(f) are their respective auto-spectral
densities. This formulation is based on the method originally
proposed by Welch [28]. and widely used in EEG coherence
studies [18], [29]. Coherence values were computed over the
beta frequency band and averaged to obtain a single coherence
value per channel pair. These values were used to generate
subject-level coherence matrices for both PD and Control
groups, which were then included in further analyses such as
heatmap visualizations and classification modeling.
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D. Connectivity Analysis

1) Heatmap Generation: Heatmaps based on Phase-Locking
Value (PLV) and coherence were generated to visualize func-
tional connectivity between brain regions. Color intensity
indicates connectivity strength between EEG electrode pairs,
offering a spatial view of inter-regional synchronization [7],
[28], [30]. PLV measures phase consistency [7], [8], while
coherence reflects linear frequency-domain correlation [17],
[28]. The resulting symmetric, square matrices have axes corre-
sponding to the selected EEG channels [4], [19], [30]. Group-
level connectivity differences were examined by generating
separate PLV and coherence heatmaps for PD and control
groups [10]. Individual connectivity matrices were averaged to
produce whole-brain maps (all EEG channels) and focused
maps (motor-related electrodes: F3, C3, Cz, C4, F4, FC3, FC4)
[2], 4], [6], [30]. In total, eight heatmaps were created PLV and
coherence for both whole brain and motor regions in each group
enabling both global and region-specific comparisons of
functional connectivity.

2) Statistical Analysis: To identify statistically significant
differences in functional connectivity between the Parkinson’s
disease (PD) and control groups, independent two-sample t-
tests were performed on precomputed connectivity features
[10], [17], [27]. The specific channel pairs were selected based
on their relevance to motor and premotor brain regions [2], [4],
[6], [12], [31]: F3-C3, F3-Cz, F3-C4, F3-F4, F3-FC3, F3—
FC4, C3-Cz, C3-C4, C3-F4, C3-FC3, C3-FC4, Cz—C4, Cz-
F4, Cz-FC3, Cz-FC4, C4-F4, C4-FC3, C4-FC4, F4-FC3,
F4-FC4, and FC3-FC4. This yielded a p-value for each
connection in both PLV and coherence datasets, enabling the
identification of statistically meaningful group differences [10].
The p-values obtained from t-tests were used to determine the
statistical significance of group-level differences in functional
connectivity between the Parkinson’s disease (PD) and control
groups. For each selected electrode pair, a p-value was calcu-
lated separately for both phase-locking value (PLV) and co-
herence measures [7], [8], [17], [28]. A significance threshold
of p < 0.05 was applied. Channel pairs that yielded p-values
below this threshold were considered to exhibit statistically
significant differences in beta-band connectivity between the
two groups. These results were later visualized using bar plots
and box plots to highlight key connections with potential
diagnostic relevance [30]. For visual representation of the
differences in connectivity strength for selected connections,
box plots and bar plots were generated. These plots provided an
intuitive view of distribution differences across the groups,
particularly for those with significant or near-significant p-
values [10], [30].

E. Machine Learning Classification

To increase dataset size and maintain uniformity, each EEG
recording from PD and control subjects was divided into non-
overlapping 20-second epochs [10], [21]. Segments shorter than
20 seconds at the end of recordings were discarded. This
ensured fixed-length inputs, improving the robustness and
reliability of subsequent machine learning classification [21].
To evaluate the performance of the machine learning models,

the dataset was randomly divided into training and testing
sets using a 70/30 split ratio [21]. Specifically, 70% of the
segmented EEG samples were used to train the models, while
the remaining 30% were reserved for testing and evaluating
their generalization performance. This stratified split ensured
that samples from both Parkinson’s disease (PD) and control
groups were proportionally represented in both the training and
testing sets. By keeping the class distribution balanced across
the split, we aimed to minimize bias and obtain more reli- able
performance metrics during classification [10], [23]. For the
classification task, we employed six supervised machine
learning algorithms: Fine Decision Tree, Linear Discriminant
Analysis (LDA), Naive Bayes, Linear Support Vector Machine
(SVM), Fine K-Nearest Neighbors (KNN), and a Narrow Neu-
ral Network. These models were selected to capture a diverse
range of decision boundaries—from linear to highly nonlinear
patterns—while comparing their performance in distinguishing
between Parkinson’s disease (PD) and control EEG segments
[10], [21], [23].Moreover, various features of EEG data have
been successfully utilized in related applications [11]-[13]

II. RESULTS
A. Heatmap Analysis

1) Whole-Brain PLV and Coherence: When examining
whole-brain EEG connectivity, distinct patterns emerged in
both PLV and coherence analyses between the Parkinson’s
disease (PD) and control groups [4], [10], [30]. Visual inspec-
tion of whole-brain PLV heatmaps reveals slight connectivity
differences. In the Parkinson’s disease (PD) group (Figure
1: Desc), more yellow regions indicate stronger beta-band phase
synchronization between certain EEG channel pairs. The
control group shows more evenly distributed and overall lower
connectivity. Visual inspection of whole-brain coher- ence
heatmaps shows distinct differences: the control group has more
high-intensity (yellow) regions, indicating stronger overall
coherence, whereas the PD group displays fewer yellow areas,
reflecting reduced coherence. When focusing on motor- related
EEG regions (F3, C3, Cz, C4, F4, FC3, FC4), different patterns
emerged in PLV and coherence analyses between Parkinson’s
disease (PD) and control groups [2], [4], [6], [18].

2) Focused Region PLV and Coherence: In the PLV
heatmaps, only slight differences were observed; the PD group
exhibited a mild increase in phase synchronization in some
connections, but the overall distribution remained comparable
to the control group. In the coherence heatmaps, a distinct
difference was observed between the control and Parkinson’s
disease (PD) groups. The PD group showed a marked reduction
in these yellow regions, reflecting a substantial decrease in
functional connectivity. This decline was particularly evident in
the focused motor-related areas (F3, C3, Cz, C4, F4, FC3, FC4),
suggesting a disruption in inter-regional communication within
motor networks commonly affected by Parkinson’s disease. [3],
[4], [6], [19].

B. Statistical Test Results

T-test results revealed significant group differences in PLV
(Cz—F4, p = 0.0073; Cz-FC3, p = 0.0213) and coherence
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Figure 3: Focused-Region PD Group Coherence Beta Band

(F3-C3, p = 0.0053; F3—Cz, p = 0.0223; F3-FC4, p = 0.0340;
Cz—C4, p = 0.0154; Cz-F4, p = 0.0316), highlighting altered
motor-related connectivity in Parkinson’s disease. Bar plots
were created for each PLV and coherence feature, showing
mean connectivity values for Parkinson’s disease and con- trol
groups across selected channels, with red dots marking
significant differences (p < 0.05) and error bars showing
standard deviation. These plots complement statistical tests by
visually highlighting group differences, especially for features
with significant results. Boxplot analysis revealed significantly
higher PLV in Parkinson’s disease patients for Cz-F4 (p =
0.0073) and Cz—FC3 (p = 0.0213) links, indicating abnormal
hypersynchronization in frontocentral regions that may relate to
reduced motor flexibility. Coherence analysis revealed sig-
nificantly reduced connectivity in Parkinson’s disease patients
for F3-C3 (p = 0.0053), F3-Cz (p = 0.0223), F3-FC4 (p
= 0.0340), and Cz—C4 (p = 0.0154), indicating impaired
communication in motor and executive networks. Cz—F4 also
showed reduced coherence (p = 0.0316), aligning with PLV
findings and suggesting consistent disruptions across measures.

C. Machine Learning Results

Using PLV and coherence features, several machine learning
models were tested to distinguish Parkinson’s disease from
controls. The Fine Tree classifier achieved the highest test
accuracy (84.72%), outperforming Linear SVM (70.83%), Fine
KNN (76.39%), Neural Network (73.61%), Naive Bayes
(69.44%), and LDA (68.06%).

IV. DISCUSSION

This study compared beta-band functional connectivity in
Parkinson’s disease (PD) and healthy controls using EEG-
derived PLV and coherence. PD patients showed increased

PLV, particularly in frontocentral regions, indicating pathologi-
cal hypersynchronization related to motor rigidity and bradyki-
nesia. In contrast, coherence was broadly reduced, especially in
fronto-motor connections, reflecting impaired large-scale
network integration and reduced coordination associated with
disease progression [2], [4], [6], [19], [20]. Statistical testing
revealed significant PLV (e.g., Cz—F4) and coherence (e.g., F3—
C3) alterations in regions linked to motor planning, senso-
rimotor integration, and executive control, functions typically
impaired in PD [3], [6], [17]. Visualization techniques such as
box plots and heatmaps highlighted connectivity differences, a
common neuroengineering approach to reveal alterations
hidden in raw EEG data [8]. Machine learning classifiers (e.g.,
Fine Decision Tree, KNN, SVM) based on these EEG features
showed promising diagnostic potential, with the Fine Tree
achieving 84.72% accuracy, consistent with previous studies
using synchronization measures for neural disorder detection
[10], [21], [23].Combining spectral (coherence) and phase-
based (PLV) metrics offers a fuller view of connectivity
changes, as coherence captures linear relationships while PLV
reflects phase consistency [7], [18].

V. CONCLUSIONS

This study demonstrates that beta-band EEG connectivity
(increased PLV, decreased coherence) can effectively differ-
entiate Parkinson’s disease patients from healthy controls,
particularly in motor-related regions. Significant frontocentral
alterations and strong Fine Decision Tree classification per-
formance highlight the potential of these metrics for non-
invasive diagnosis and real-time clinical decision support.
Future research should assess their longitudinal changes and
integrate EEG with modalities like MRI to enhance diagnostic
precision
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