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Abstract—Parkinson’s disease (PD) is a progressive neurode- 
generative disorder that impairs motor functions and disrupts 
functional brain connectivity. Electroencephalography (EEG), 
with its high temporal resolution, enables investigation of these 
disruptions in resting-state brain activity. This study aims to 
differentiate PD patients from healthy controls by analyzing beta- 
band (12–35 Hz) EEG connectivity through two widely used syn- 
chronization metrics: Phase Locking Value (PLV) and magnitude- 
squared coherence. We utilized an open-access EEG dataset from 
the University of Iowa, comprising 13 individuals with PD and 
13 age-matched healthy controls, recorded during eyes- open 
resting state. EEG signals were filtered in the beta band, and both 
PLV and coherence metrics were calculated across 63 channels. 
Connectivity heatmaps were generated for whole-brain 

jeneratif bozukluktur. Yüksek zamansal çözünürlüg˘e sahip elek- 
troensefalografi (EEG), dinlenim hâlindeki beyin aktivitesinde bu 
bozulmaların aras¸tırılmasına olanak tanır. Bu çalıs¸ma, beta bant 
(12–35 Hz) EEG bag˘lantılılıg˘ını iki yaygın senkronizasyon ölçütü 
olan Phase Locking Value (PLV) ve kareli büyüklük tutarlılıg˘ı 
(magnitude-squared coherence) kullanarak Parkinson hastaları ile 
sag˘lıklı bireyleri ayırt etmeyi amaçlamaktadır. Çalıs¸- mada, Iowa 
Üniversitesi’nden temin edilen açık eris¸imli bir EEG veri seti 
kullanılmıs¸tır. Veri seti, gözler açık dinlenim hâlinde kaydedilen 
13 Parkinson hastası ve yas¸ça es¸les¸tirilmis¸ 13 sag˘lıklı bireyden 
olus¸maktadır. EEG sinyalleri beta bandında filtrelenmis¸ ve PLV 
ile coherence ölçütleri 63 kanal üzerinden hesaplanmıs¸tır. Tüm 
beyin ve motorla ilis¸kili bölgeler (F3, C3, Cz, C4, F4, FC3, FC4) 
için bag˘lantı haritaları olus¸turulmus¸- 

and motor-related regions (F3, C3, Cz, C4, F4, FC3, FC4). While tur. Parkinson hastaları, sag˘lıklı bireylere kıyasla artmıs¸ faz 

PD subjects showed increased phase synchronization (PLV), they senkronizasyonu (PLV) sergilemis¸ ancak coherence deg˘erleri 

demonstrated reduced coherence values compared to controls, 
suggesting abnormal hypersynchrony alongside decreased linear 
coupling. Statistical comparisons using independent t-tests re- 
vealed significant differences in specific connections (e.g., Cz–F4, 
F3–C3), particularly within motor areas. These features were used 
to train six supervised machine learning classifiers including Fine 
Tree, LDA, Linear SVM, Fine KNN, Naive bayes and neural 
network. Fine Tree model achieved promising classification 
accuracy of 84.7%, highlighting the potential of EEG-based 
features in aiding early diagnosis of Parkinson’s disease. 

In conclusion, our findings demonstrate that PLV and coher- 
ence in the beta band, especially in motor-related networks, can 
serve as meaningful biomarkers. Combined with machine learn- 
ing, this approach offers a non-invasive tool for distinguishing PD 
from healthy controls 
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Özetçe—Parkinson hastalıg˘ı (PH), motor fonksiyonları bozan 
ve beynin is¸levsel bag˘lantılılıg˘ını etkileyen ilerleyici bir nörode- 

daha düs¸ük bulunmus¸tur. Bu durum, azalmıs¸ lineer bag˘lanma 
ile birlikte anormal hipersenroniyi is¸aret etmektedir. Bag˘ımsız t-
testi ile yapılan istatistiksel kars¸ılas¸tırmalar, özellikle motor 
bölgelerdeki belirli bag˘lantılarda (örn. Cz–F4, F3–C3) anlamlı 
farklılıklar ortaya koymus¸tur. Elde edilen özellikler, Fine Tree, 
LDA, Linear SVM, Fine KNN, Naive Bayes ve yapay sinir ag˘ı 
olmak üzere altı denetimli makine ög˘renmesi sınıflandırıcısında 
kullanılmıs¸tır. Fine Tree modeli %84,7 dog˘ruluk oranı ile umut 
verici bir sınıflandırma performansı göstermis¸tir. Sonuç olarak, 
beta bandında özellikle motorla ilis¸kili ag˘larda PLV ve coher- 
ence ölçümleri anlamlı biyobelirteçler olarak deg˘erlendirilebilir. 
Makine ög˘renmesi ile birles¸tirildig˘inde bu yaklas¸ım, Parkinson 
hastalıg˘ının sag˘lıklı bireylerden ayrımında invazif olmayan bir 
araç olarak potansiyel tas¸ımaktadır. 

Anahtar Kelimeler—Parkinson hastalıg˘ı; EEG; PLV; koherans; 
makine ög˘renmesi 
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I. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenera- 
tive disorder affecting motor control and cognitive function, 
often disrupting functional connectivity in motor and exec- 
utive networks [1], [2]. EEG, a non-invasive technique with 
high temporal resolution, enables detection of abnormal brain 
dynamics in PD [4]. Beta-band activity (12–35 Hz), linked 
to motor processing, is frequently altered in PD, especially 
in motor-related cortical areas [1], [5], [24]. Previous studies 
report increased phase-locking and decreased coherence in PD, 
varying by region and method [4], [6], [18], [27]. This study 
analyzed beta-band connectivity in frontal and central regions 
(F3, C3, Cz, C4, F4, FC3, FC4) identified in prior literature as 
abnormal in PD [1], [2], [4], [24]. We evaluated whether phase- 
locking value (PLV) and coherence from these regions could 
distinguish PD patients from controls and serve as features for 
machine learning models [10], [21]. 

II. MATERIALS & METHODS

A. EEG Dataset
This study utilized an open-access EEG dataset originally

premotor areas in Parkinson’s disease patients. Rather than 
limiting the analysis to a single electrode pair, we evaluated 
connectivity across multiple pairwise combinations within this 
region of interest. The pairs included: F3–C3, F3–Cz, F3–C4, 
F3–F4, F3–FC3, F3–FC4, C3–Cz, C3–C4, C3–F4, C3–FC3, 
C3–FC4, Cz–C4, Cz–F4, Cz–FC3, Cz–FC4, C4–F4, C4–FC3, 
C4–FC4, F4–FC3, F4–FC4, and FC3–FC4. These electrodes 
correspond to cortical areas involved in motor initiation, sen- 
sorimotor integration, and interhemispheric coordination—all 
of which are impacted in PD [4], [6], [18]. 

C. Connectivity Measures

1) Phase Locking Value (PLV): To assess functional connec- 
tivity based on phase synchronization between EEG channels, 
we employed the Phase-Locking Value (PLV) metric [7], [8]. 
PLV quantifies the consistency of phase differences between 
two time-series signals over time. The Hilbert transform was 
applied to each channel to obtain the instantaneous phase. PLV 
was then computed pairwise between all EEG channels 
according to the following formula: 

PLVij =
1
𝑁𝑁
�𝑒𝑒𝑖𝑖(𝜙𝜙1(𝑛𝑛)−𝜙𝜙2(𝑛𝑛))  (1)
𝑁𝑁

𝑛𝑛=0
published by Anjum et al. [30], developed for the LEAPD 
(Linear Predictive Coding EEG Algorithm for Parkinson’s 
Disease) study. The full dataset includes recordings from 41 
Parkinson’s disease (PD) patients and 41 demographically 

matched healthy controls, collected at two institutions: the 
University of New Mexico (UNM) and the University of Iowa. 
For the present analysis, only the Iowa cohort was used, which 
consists of 14 PD patients and 14 healthy controls, all recorded 
during a resting-state, eyes-open condition. EEG recordings 
were acquired using a 64-channel BrainVision system, sampled 
at 500 Hz, with a hardware bandpass filter of 0.1–100 Hz. The 
online reference electrode was Pz in the Iowa dataset. As 
this electrode was used as a reference, its data was not available, 
resulting in 63 usable EEG channels for all subjects. During 
preprocessing, two subjects (PD1681 and Control1411) were 
excluded due to technical issues, including incomplete 
recordings and high artifact contamination. Thus, the final 
dataset comprised 26 participants (13 PD and 13 control). Eye- 
blink artifacts were removed using Independent Component 
Analysis (ICA). Only the eyes-open condition was analyzed in 
this study, as it provides a more stable and informative neural 
baseline for resting-state EEG connectivity analysis [13-16,30]. 

where ϕ1(n) and ϕ2(n) denote the instantaneous phases of 
channels i and j, respectively, and N represents the total number 
of time points. Equation 1 [7]. and further discussed by Aydore 
et n was first introduced by Lachaux et al. al. [8]. 

PLV values range from 0 (indicating no phase synchroniza- 
tion) to 1 (perfect phase locking). Individual PLV matrices were 
computed for each subject, separately for the Parkinson’s 
Disease (PD) and Control groups, and used in subsequent 
statistical and machine learning analyses. 

2) Coherence: Magnitude-squared coherence was used to
evaluate functional connectivity in the frequency domain [17], 
[28]. Coherence reflects the linear correlation between two 
signals at specific frequencies, accounting for both phase and 
amplitude relationships. Coherence between each pair of EEG 
channels was estimated using Welch’s method, which involves 
segmenting the signal, applying windowing, and averaging the 
periodograms. The coherence function Cij(f ) was defined as: 

|Sij(f )|2 
B. Preprocessing

We specifically focused on the beta frequency band (12–35
Cij = 

ii (f ) Sjj 
(2) 

(f ) 

Hz), as it has been widely associated with motor control and is 
known to be affected in Parkinson’s disease [1], [5], [24]. We 
applied a bandpass filter to the EEG signals, removing lower 
(delta, theta, alpha) and higher (gamma) frequency compo- 
nents. This ensured that all subsequent connectivity analyses, 
such as PLV and coherence, reflected only beta-band dynamics 
[8], [27]. We focused on electrode pairs in the frontal and 
central scalp regions, specifically F3, C3, Cz, C4, F4, FC3, and 
FC4. These were chosen based on prior studies that identified 
significant beta-band connectivity disruptions in motor and 

where Sij(f) denotes the cross-spectral density between chan- 
nels i and j, and Sii(f), Sjj(f) are their respective auto-spectral 
densities. This formulation is based on the method originally 
proposed by Welch [28]. and widely used in EEG coherence 
studies [18], [29]. Coherence values were computed over the 
beta frequency band and averaged to obtain a single coherence 
value per channel pair. These values were used to generate 
subject-level coherence matrices for both PD and Control 
groups, which were then included in further analyses such as 
heatmap visualizations and classification modeling. 

S 
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D. Connectivity Analysis
1) Heatmap Generation: Heatmaps based on Phase-Locking

Value (PLV) and coherence were generated to visualize func- 
tional connectivity between brain regions. Color intensity 
indicates connectivity strength between EEG electrode pairs, 
offering a spatial view of inter-regional synchronization [7], 
[28], [30]. PLV measures phase consistency [7], [8], while 
coherence reflects linear frequency-domain correlation [17], 
[28]. The resulting symmetric, square matrices have axes corre- 
sponding to the selected EEG channels [4], [19], [30]. Group- 
level connectivity differences were examined by generating 
separate PLV and coherence heatmaps for PD and control 
groups [10]. Individual connectivity matrices were averaged to 
produce whole-brain maps (all EEG channels) and focused 
maps (motor-related electrodes: F3, C3, Cz, C4, F4, FC3, FC4) 
[2], [4], [6], [30]. In total, eight heatmaps were created PLV and 
coherence for both whole brain and motor regions in each group 
enabling both global and region-specific comparisons of 
functional connectivity. 

2) Statistical Analysis: To identify statistically significant
differences in functional connectivity between the Parkinson’s 
disease (PD) and control groups, independent two-sample t- 
tests were performed on precomputed connectivity features 
[10], [17], [27]. The specific channel pairs were selected based 
on their relevance to motor and premotor brain regions [2], [4], 
[6], [12], [31]: F3–C3, F3–Cz, F3–C4, F3–F4, F3–FC3, F3–
FC4, C3–Cz, C3–C4, C3–F4, C3–FC3, C3–FC4, Cz–C4, Cz–
F4, Cz–FC3, Cz–FC4, C4–F4, C4–FC3, C4–FC4, F4–FC3, 
F4–FC4, and FC3–FC4. This yielded a p-value for each 
connection in both PLV and coherence datasets, enabling the 
identification of statistically meaningful group differences [10]. 
The p-values obtained from t-tests were used to determine the 
statistical significance of group-level differences in functional 
connectivity between the Parkinson’s disease (PD) and control 
groups. For each selected electrode pair, a p-value was calcu- 
lated separately for both phase-locking value (PLV) and co- 
herence measures [7], [8], [17], [28]. A significance threshold 
of p < 0.05 was applied. Channel pairs that yielded p-values 
below this threshold were considered to exhibit statistically 
significant differences in beta-band connectivity between the 
two groups. These results were later visualized using bar plots 
and box plots to highlight key connections with potential 
diagnostic relevance [30]. For visual representation of the 
differences in connectivity strength for selected connections, 
box plots and bar plots were generated. These plots provided an 
intuitive view of distribution differences across the groups, 
particularly for those with significant or near-significant p- 
values [10], [30]. 

E. Machine Learning Classification
To increase dataset size and maintain uniformity, each EEG

recording from PD and control subjects was divided into non- 
overlapping 20-second epochs [10], [21]. Segments shorter than 
20 seconds at the end of recordings were discarded. This 
ensured fixed-length inputs, improving the robustness and 
reliability of subsequent machine learning classification [21]. 
To evaluate the performance of the machine learning models, 

the dataset was randomly divided into training and testing 
sets using a 70/30 split ratio [21]. Specifically, 70% of the 
segmented EEG samples were used to train the models, while 
the remaining 30% were reserved for testing and evaluating 
their generalization performance. This stratified split ensured 
that samples from both Parkinson’s disease (PD) and control 
groups were proportionally represented in both the training and 
testing sets. By keeping the class distribution balanced across 
the split, we aimed to minimize bias and obtain more reli- able 
performance metrics during classification [10], [23]. For the 
classification task, we employed six supervised machine 
learning algorithms: Fine Decision Tree, Linear Discriminant 
Analysis (LDA), Naive Bayes, Linear Support Vector Machine 
(SVM), Fine K-Nearest Neighbors (KNN), and a Narrow Neu- 
ral Network. These models were selected to capture a diverse 
range of decision boundaries—from linear to highly nonlinear 
patterns—while comparing their performance in distinguishing 
between Parkinson’s disease (PD) and control EEG segments 
[10], [21], [23].Moreover, various features of EEG data have 
been successfully utilized in related applications [11]–[13] 

III. RESULTS

A. Heatmap Analysis
1) Whole-Brain PLV and Coherence: When examining

whole-brain EEG connectivity, distinct patterns emerged in 
both PLV and coherence analyses between the Parkinson’s 
disease (PD) and control groups [4], [10], [30]. Visual inspec- 
tion of whole-brain PLV heatmaps reveals slight connectivity 
differences. In the Parkinson’s disease (PD) group (Figure 
1: Desc), more yellow regions indicate stronger beta-band phase 
synchronization between certain EEG channel pairs. The 
control group shows more evenly distributed and overall lower 
connectivity. Visual inspection of whole-brain coher- ence 
heatmaps shows distinct differences: the control group has more 
high-intensity (yellow) regions, indicating stronger overall 
coherence, whereas the PD group displays fewer yellow areas, 
reflecting reduced coherence. When focusing on motor- related 
EEG regions (F3, C3, Cz, C4, F4, FC3, FC4), different patterns 
emerged in PLV and coherence analyses between Parkinson’s 
disease (PD) and control groups [2], [4], [6], [18]. 

2) Focused Region PLV and Coherence: In the PLV
heatmaps, only slight differences were observed; the PD group 
exhibited a mild increase in phase synchronization in some 
connections, but the overall distribution remained comparable 
to the control group. In the coherence heatmaps, a distinct 
difference was observed between the control and Parkinson’s 
disease (PD) groups. The PD group showed a marked reduction 
in these yellow regions, reflecting a substantial decrease in 
functional connectivity. This decline was particularly evident in 
the focused motor-related areas (F3, C3, Cz, C4, F4, FC3, FC4), 
suggesting a disruption in inter-regional communication within 
motor networks commonly affected by Parkinson’s disease. [3], 
[4], [6], [19]. 

B. Statistical Test Results
T-test results revealed significant group differences in PLV

(Cz–F4, p = 0.0073; Cz–FC3, p = 0.0213) and coherence 
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Figure 1: a)Average Control Group PLV Beta Band b)Average 
PD Group PLV Beta Band c)Average Control Group Coher- 
ence Beta Band d)Average PD Group Coherence Beta Band 

Figure 2: a)Average Control Group PLV Beta Band b)Average 
PD Group PLV Beta Band c)Average Control Group Coher- 
ence Beta Band d)Average PD Group Coherence Beta Band 
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Figure 3: Focused-Region PD Group Coherence Beta Band 

(F3–C3, p = 0.0053; F3–Cz, p = 0.0223; F3–FC4, p = 0.0340; 
Cz–C4, p = 0.0154; Cz–F4, p = 0.0316), highlighting altered 
motor-related connectivity in Parkinson’s disease. Bar plots 
were created for each PLV and coherence feature, showing 
mean connectivity values for Parkinson’s disease and con- trol 
groups across selected channels, with red dots marking 
significant differences (p < 0.05) and error bars showing 
standard deviation. These plots complement statistical tests by 
visually highlighting group differences, especially for features 
with significant results. Boxplot analysis revealed significantly 
higher PLV in Parkinson’s disease patients for Cz–F4 (p = 
0.0073) and Cz–FC3 (p = 0.0213) links, indicating abnormal 
hypersynchronization in frontocentral regions that may relate to 
reduced motor flexibility. Coherence analysis revealed sig- 
nificantly reduced connectivity in Parkinson’s disease patients 
for F3–C3 (p = 0.0053), F3–Cz (p = 0.0223), F3–FC4 (p 
= 0.0340), and Cz–C4 (p = 0.0154), indicating impaired 
communication in motor and executive networks. Cz–F4 also 
showed reduced coherence (p = 0.0316), aligning with PLV 
findings and suggesting consistent disruptions across measures. 

C. Machine Learning Results
Using PLV and coherence features, several machine learning

models were tested to distinguish Parkinson’s disease from 
controls. The Fine Tree classifier achieved the highest test 
accuracy (84.72%), outperforming Linear SVM (70.83%), Fine 
KNN (76.39%), Neural Network (73.61%), Naive Bayes 
(69.44%), and LDA (68.06%). 

IV. DISCUSSION

This study compared beta-band functional connectivity in 
Parkinson’s disease (PD) and healthy controls using EEG- 
derived PLV and coherence. PD patients showed increased 

PLV, particularly in frontocentral regions, indicating pathologi- 
cal hypersynchronization related to motor rigidity and bradyki- 
nesia. In contrast, coherence was broadly reduced, especially in 
fronto-motor connections, reflecting impaired large-scale 
network integration and reduced coordination associated with 
disease progression [2], [4], [6], [19], [20]. Statistical testing 
revealed significant PLV (e.g., Cz–F4) and coherence (e.g., F3–
C3) alterations in regions linked to motor planning, senso- 
rimotor integration, and executive control, functions typically 
impaired in PD [3], [6], [17]. Visualization techniques such as 
box plots and heatmaps highlighted connectivity differences, a 
common neuroengineering approach to reveal alterations 
hidden in raw EEG data [8]. Machine learning classifiers (e.g., 
Fine Decision Tree, KNN, SVM) based on these EEG features 
showed promising diagnostic potential, with the Fine Tree 
achieving 84.72% accuracy, consistent with previous studies 
using synchronization measures for neural disorder detection 
[10], [21], [23].Combining spectral (coherence) and phase-
based (PLV) metrics offers a fuller view of connectivity 
changes, as coherence captures linear relationships while PLV 
reflects phase consistency [7], [18]. 

V. CONCLUSIONS

This study demonstrates that beta-band EEG connectivity 
(increased PLV, decreased coherence) can effectively differ- 
entiate Parkinson’s disease patients from healthy controls, 
particularly in motor-related regions. Significant frontocentral 
alterations and strong Fine Decision Tree classification per- 
formance highlight the potential of these metrics for non- 
invasive diagnosis and real-time clinical decision support. 
Future research should assess their longitudinal changes and 
integrate EEG with modalities like MRI to enhance diagnostic 
precision 
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